





# Mortality in Jordan: Maternal and Adult Mortality

# And building Life Tables

# Analytical study based on Population and Housing

# Census Data, 2015

# Department of Statistics



#### Introduction

The Department of Statistics is pleased to provide the first report of its kind, "Mortality in Jordan-Maternal and adult mortality and building life tables, based on the Population and Housing Census Data 2015 as well as Population and Family Health Survey data.

The monitoring of mortality in different age groups is essential and relevant to determining the quality and pattern of diseases in any society, including the causes of death in different age groups, the decision makers rely on them to develop policies, distribute resources and develop health plans for prevention and treatment.

The mortality rate is an important measure that affects population trends and their impact on health status. It helps to draw health policies that are appropriate to those standards and allow the assessment of the country's development and progression, as it is a social norm of economic growth, such as nutrition and education.

This report provides statistics on mortality in the Kingdom during 2015 and The Population and Family Health Survey data were used for several past years 1997, 2002, 2007, and 2012 to show trends in mortality, the report also includes age average mortality and child mortality rates, and contains life expectancy at birth and survival indicators.

Child mortality is a large proportion of the total death toll, and in this report child mortality is referred to as deaths from birth to age 5, including deaths of newborns, infants and under five years of age. Mortality rates contribute to the demographic and health assessment of the population, which is an important indicator of the quality of life in the Kingdom. Such rates could also be used to monitor and evaluate population and health programs.

One of the shortcomings of child mortality statistics is the registration of infant mortality. Some cases are not recorded at their normal place of residence, causing a source of error when comparing the registration data with the population data according to the place of residence.

The report contains life tables for males, females and both sexes at the national level, making it a necessary reference for all researchers in the demographic, population, health, social, economic and other fields, and providing life expectancy for males and females at the Kingdom level to use them in preparing population projections at the Kingdom level and the importance of providing life tables for their multiple uses in all fields, especially health and economic fields, where they can be used to identify the prevailing patterns of morality in society and gender differences in life prospects according to life expectancy. The construction of these tables helps to design programs and plans to address the difficulties faced by demographic, population, health, social and economic planners.

#### **Executive Summary**

The importance of this report comes in using the recent data from the Population and Housing Census 2015 in the Hashemite Kingdom of Jordan, which was carried out by the Department of Statistics during the latter half of the year 2015, the family and population health status Survey data were used for the past few years as well as data of the Civil Status Department for both Jordanian male and female to provide a circle life expectancy for the males and females in the Kingdom to be used for preparing population projections Which makes it a Reference that could be used by all researchers in the Demographic, Population, Social and Health fields ......ETC,

From the life tables included in the report, it is clear that:

1. There are significant variations in life expectancy value at birth according to gender

2. Life expectancy at birth for females is high at the national level compared to life expectancy for males, with life expectancy at birth for females 74.0 years compared to 72.5 years for males.

3. As for The infant mortality rate, which was estimated according to the results of the population and family health survey, was approximately 0.0184 for males and 0.0158 for females.

4. The results of the under-five mortality rate were 0.0204 boys and 0.0176 girls.

5. The maternal mortality rate was about 25 deaths per 100,000 live births.

# Teamwork

Supervision and review

Dr. Qasem Al-Zubi

Dr. Abdullah Al-Zubi

**Mohamed Al-Jundi** 

**Mohamed Al-Assaf** 

۵

Prepared by

Buthayna Alawneh

Wissam Shraydeh

Areej Khabour

Amani Al-Horani

# **Table of Contents**

| ntroduction       |   |
|-------------------|---|
| Executive Summary | Ì |
| eamwork4          | ł |
| Cable of Content  | 5 |
| ppendix           | 5 |
| eferences         | 7 |
| ist of Tables     | 7 |
| st of Figures     | 8 |

# Chapter 1: Introduction

| 1.1 General background:       | 9 |
|-------------------------------|---|
| 1.2 The importance of Study10 | ) |

| 1.3 The Objective:                                                              | 10 |
|---------------------------------------------------------------------------------|----|
| 1.4 Methodology and data sources                                                | 11 |
| 1.5 Definitions used                                                            | 11 |
| Chapter II: Maternal Mortality                                                  |    |
| 2.1 Importance of Maternal Mortality                                            | 13 |
| 2.2 The response of the Population Census 2015 for measuring maternal mortality | 14 |
| 2.3 Results                                                                     | 15 |
| 2.4 Births:                                                                     | 16 |
| 2.5 Maternal Mortality Rate (MMR)                                               | 17 |

# Chapter 3: The completion of Reporting Adult Mortality

| 3.1 General background:             |    |
|-------------------------------------|----|
| 3.2 Measurement of Adult Mortality: | 19 |
| 3.2.1 Brass Technique               | 19 |

| 3.2.2 Preston-Coale Technique:               |          |
|----------------------------------------------|----------|
| 3.3 The relationship between rate and probab | ility:23 |

# 

### Chapter 5: Life Tables

| 5.1 Background on Life Tables: | 31 |
|--------------------------------|----|
| 5.2 Building life tables:      | 33 |

# Appendix

| Appendix (1): Death Probability Values                                            | 43 |
|-----------------------------------------------------------------------------------|----|
| Appendix (2): Tables to estimate the completion of mortality                      | 45 |
| Appendix (3): Detailed tables of attempts to estimate $\alpha$ and $\beta$ values | 49 |
| Appendix (5) Life Tables                                                          | 78 |
| Appendix (6)Standard tables of survivals probabilities (model west)               | 79 |

## References

| References in Arabic  |    |
|-----------------------|----|
| References in English | 82 |
| List of Tables        |    |

| Table 1: Births by sex, year of registration of Jordanians and total population          | .16 |
|------------------------------------------------------------------------------------------|-----|
| Table 2: Summary of the calculation of the degree of completeness of the registration of | of  |
| mortality and the corrected mortality rate                                               | .22 |
| Table 3: Infant mortality rates by source and time periods prior to each survey          | .24 |

| Table 4: Under-five mortality rates by source and time periods prior to each survey    | .25 |
|----------------------------------------------------------------------------------------|-----|
| Table 5: Multiple attempts using life tables (west) total population                   | .28 |
| Table 6: Multiple attempts using Life Tables (West) to Jordanian census                | .29 |
| Table 7: Multiple attempts using the life tables (west) for Civil Status and Passports | .29 |
| Table 8: Brief life table of males (population) in Jordan                              | 36  |
| Table 9: Table 9: Brief life table of females (population) in Jordan 2015              | .37 |
| Table 10: Brief life table of males (census) in Jordan for 2015                        | .38 |
| Table 11: Brief life table of females (census) in Jordan for 2015                      | .39 |
| Table 12: Brief life table of males (civil status) in Jordan for 2015                  | .40 |
| Table 13: Brief life table of males (civil status) in Jordan for 2015                  | 41  |

# List of Figures

| Figure 1: Births by year for Jordanians and the total population                          | 17 |
|-------------------------------------------------------------------------------------------|----|
| Figure 2: Infant mortality rates by source and time periods prior to each survey          | 25 |
| Figure 3: Mortality rates for children under five by source and time periods prior to eac | h  |
| survey                                                                                    | 26 |

# **Chapter One**

# **1.1 General background:**

The study and analysis of mortality has received great attention from demographers in previous decades as it contributes to the identification of the prevailing patterns of mortality in society and the gender disparities in the likelihood of survival and mortality according to different ages, It is one of the most important indicators that reflect the economic and social conditions in general and health in particular, It also provides a realistic picture of mortality levels and trends and highlights indicators that monitor mortality, where deaths among family members during the 24 months preceding the census and registration of demographic and social characteristics can be identified based on data provided by the general population and housing census 2015, It also highlighted maternal mortality from pregnancy (childbirth or puerperal); and the distinction between pregnancy-related and childbirth-related causes of maternal mortality and adult mortality, as well as infant and child mortality.

It also addresses the need for information on past population changes that are necessary for future projections of population and other demographic characteristics, the development of housing and education plans, the social security program and other health programs. Mortality is one of the major and fundamental components of past and future population dynamics and is one of the determinants of the age and gender composition of the population.

In Jordan, sustained efforts have been made to reduce morality levels, which can only be achieved with adequate and high-quality data to obtain reliable estimates of mortality. In order to obtain such data, the Department of Statistics has conducted a number of surveys in addition to the censuses conducted so far from 1952 to 2015, through which the necessary demographic measures, including morality measures, can be assessed. These surveys include, for example, the Population and Family Health Survey (JPFHS) in collaboration with the World Fertility Program (WFS) in 1976 and the Fertility and Family Health Survey in 1983, the Population and Family Health Survey (DHS) in 1990, 1997, 2002, 2007 and 2012, In addition to the latest census carried out by the Department of Statistics for 2015.

The importance of registering mortality lies in analyzing the demographic realities of the population, the level of population growth and knowledge and development of health standards and it contributes to knowing how long workers remain in the labor market to develop the necessary policies.

This report also contains the male and female life tables that can be used by all researchers at the national level, making it a reference for the different demographic, social, health, economic and other sectors.

Despite ongoing efforts to analyze mortality in terms of causes of death, sex and age, Jordan's mortality system still lacks a methodology for mortality and its causes, and therefore no statistical indicators are available, since deaths in Jordan are not reported and the crude mortality rate is estimated at 6 per 1,000 population, while civil registries provide only 3 per 1,000 inhabitants, as a result of the population's reluctance to report deaths except in cases involving hospitals or medical centers or with legal benefits. As for the causes of death, the registered mortality (even in medical centers) does not adequately reflect the reality and is not in conformity with international standards, despite persistent attempts by the concerned authorities of the Ministry of Health.

# **1.2 The importance of Study:**

The importance of studying mortality in Jordan in general and maternal mortality in particular arises not only because it is the second component after reproduction (fertility) in the factors of population change, but also because the indicators produced by these studies reflect the level of progress and the standard of living in general. There are many indicators that reflect this, including infant and newborn mortality rates, under-five mortality rates, life expectancy at birth and maternal mortality. All of these indicators adopt specific criteria that can be used to monitor the extent of improvement and change over time periods as well as to compare countries or even between regions within a country. On the other hand, these indicators fall within the system of indicators of sustainable development (SDGs) and are accepted in the Millennium Development Goals (MDGs).

In this context, this study is an addition to the ethics of morality in Jordan, as studies on maternal mortality, adult mortality and life tables depend on recent data, as morality indicators were not identified and updated for a long time.

# **1.3 The Objective:**

This study aims to provide updated data on mortality in Jordan through indicators that respond to international requirements in order to compare with other countries, especially with regard to sustainable development goals and future prospects for Jordan's population. More specifically, this study aims to:

- 1. Estimating maternal mortality.
- 2. Studying and estimating the completeness and comparison of reporting of deaths by sex and age from the census and from other sources.
- 3. Updating mortality data.
- 4. Building life tables
- 5. Extracting crude mortality indicators.

The results of this study have been used as inputs for the preparation of population projections in Jordan for the period 2015 to 2050, by age group and for both males and females.

# 1.4 Methodology and data sources:

The methodology for the study in this research involved the analytical and in-depth methodology of data by analyzing data provided by the general population and housing census 2015 on morality in the Kingdom during the 24 months preceding the census and analyzing them by sex and age at the time of death, including maternal mortality after determining the marital status of maternal mortality and conditions surrounding the state of death, in order to determine their status for maternal mortality. In addition, the data provided by Civil Status And Passport Department as an independent, permanent and vital administrative source to provide data on an annual basis corresponding to the census and to compare the results of its analysis with the results of the analysis of the general population census data, 2015.

To complete the circle, other statistical sources of data from the Population and Family Health Surveys series carried out by the Department of statistics during the past decades have been used to analyze a section on under-five mortality, which includes neonatal deaths in the first month of life, infant mortality, the risk of death before the completion of the first year of life, and underfive mortality.

Using mortality data from the census and vital statistics of the Civil Status And Passport Department for the same reference period of the census, adult mortality rates were derived after 10 years of age for each ,following an analysis of the degree of completion using specialized analysis methods of these data, the most commonly found in scientific research ethics (Kenneth Hill, Coal -Preston, Brass), and then linked to child mortality rates by sex at the national level for both males and females.

1. Determining the appropriate model of morality pattern in Jordan using model life tables/ family east that were the standard pattern of morality in Jordan in 2015.

2. Using this model as a standard reference to use it to determine the pattern of the relationship between infant and adult mortality by using the log it model that is appropriate for non-linear relationships such as the relationship between morality and age.

3. Completing the function values of male and female life tables corresponding to the level specified using model life tables/ family west.

# **1.5 Definitions used:**

- Mortality Rate: A measure of the number of deaths (generally or for a specific reason) according to the population census per year. It is usually expressed in terms (per 1000 people per year).
- **Death:** Permanent disappearance of every aspect of life of the individual (e.g. breathing, pulse or involuntary movements) at any time after birth (i.e. must be born alive) according to the short definition of the World Health Organization.
- The Elderly: Individuals aged 60 years or over.

- **Crude Death Rate:** The measure of the number of deaths for all causes of the population in a year.
- Maternal Mortality: Death that occurs to a woman during pregnancy, during childbirth, or within 42 days after pregnancy regardless of the period or place of pregnancy and of any reason, whether as a result of the pregnancy itself or as a result of an exacerbation of another cause by pregnancy or the development of medical care received by a woman during pregnancy, excluding deaths from accidents or accidental causes.
- Maternal Mortality Rate: The percentage of women who died of pregnancy and childbirth-related causes in a given year per 100,000 live births during the same year divided by the number of women of childbearing age into women of reproductive age; the maternal mortality rate reflects maternal mortality percentage, prevailing fertility rates, The maternal mortality rate reflects maternal mortality and prevailing fertility rates and is affected by pregnancy and birth risks; this indicator monitors maternal and birth-related mortality and reflects the ability of health systems to provide effective health care to prevent and treat complications during childbirth.
- **Infant mortality Rate**: the infant mortality rate is the number of children who died before the first year of life during a given year, divided by the total number of live births during the same year for every 1,000 live births.

Two other indicators are listed below this indicator:

New Born Mortality: infants who died and are under 28 days old.

Mortality after New Born: infants who died and are between 28 days and under 12 months of age.

Age At The Time Of Death: The number of years that the child has lived from birth to death.

Marital Status: The marital status of the deceased aged 13-54 at the time of death. Corrected Detailed Mortality Rate: it is the number of corrected deaths per age group

divided by the total population of each age group.

#### **Chapter II**

#### **Maternal Mortality**

#### 2.1 Importance of Maternal Mortality:

For several decades, maternal mortality has been a subject of great concern to researchers and health professionals. The importance of monitoring and analyzing maternal mortality lies in the fact that it is one of the goals of development and sustainable development that are the focus of attention of all countries. They reflect living, social, health and other realities. The maternal mortality rate is one of the health indicators that reflect the great disparity between rich and poor countries. At the 1987 Safe Motherhood Conference in Nairobi, Kenya, attention was drawn to the fact that maternal mortality rates in developing countries were often 100 times higher than those in developed countries. Subsequently, the World Bank's World Development Report 1993 over the past decade showed that maternal morbidity and mortality was the main cause of the loss of healthy life among women of reproductive age in developing countries. It was proclaimed in a number of international forums that the reduction of maternal mortality is one of its most important objectives, such as the 1990 World Summit for Children, the 1994 International Conference on Population and Development, the 1995 World Conference on Women and the 2000 Millennium Development Summit (K. Hill 2001).

This has greatly increased attention to maternal health, resulting in increased demand for maternal mortality statistics at the national level and international organizations. However, methodologies for the measurement and monitoring of maternal mortality are very late in most developing countries, simply because the available data are insufficient to provide accurate estimates. Although vital registration systems are designed to collect the necessary statistics in the event of maternal death, they remain inadequate in the quality of registration in most developing countries, and even have been found to be problematic in developed countries, Due to deficiencies in vital registration and methodologies adopted for sampling, Census data were found to be more appropriate for calculating estimates of an acceptable level of accuracy at the same time as cost-effective.

Five countries have been identified that have tried to collect data on maternal mortality in their last census. These countries include Benin, Iran, Laos, Madagascar and Zimbabwe. In November 1998, a workshop was approved in Nairobi to assess the use of the census to measure maternal mortality. The workshop was attended by experts who contributed to data collection and those who analyzed demographic data. They included representatives of the census from the five above-mentioned countries as well as from the Kenyan Central Bureau of Statistics, who worked alongside technical advisers from Johns Hopkins University, the London School of Economics-LSE, and the London School of Hygiene and Tropical Medicine. Its objectives are to document and evaluate experiences in measuring maternal mortality through the census, to encourage countries to use the census methodology to collect and analyze maternal mortality data for the purpose of conducting indicators estimates.

Since 1990, Jordan has begun gathering information to calculate the maternal mortality rate through the 1990 Population and Family Health Survey, where the results of the survey sample indicated that the maternal mortality rate was 61 per 100,000 births. According to data from a 1996 study, maternal mortality was 41 per 100,000 live births and a positive dimension was reflected at that time. Jordan was one of the co-sponsors of the Millennium Development Goals (MDGs) held in 2000, during which the international community committed itself to reducing maternal mortality, because Jordan is aware of the importance of the impact of this target on different sectors on the one hand and its impact on the lives of individuals on the other, it has worked to integrate it into national development plans and programs, which has contributed to the achievements of development, particularly reproductive health.

A previous study of maternal mortality in 2007- 2008 -done by the Supreme Population Council in collaboration with a specialized research team to assess maternal mortality- identify mortality direct and indirect causes, determine the extent to which it can be prevented, and assess the completeness of vital records, and it showed that Jordan is on the right track and has exceeded expectations and target for maternal mortality seven years before the deadline of 19 per 100,000 live births compared to 41 deaths per 100,000 live births in 1995\_1996, which means that the government and the supporting sectors have made much of their investment in maternity.

The features of improvement and development are evident in the services provided by the government and Royal Medical Services through the geographical coverage of the primary health care services of the mentioned authorities, in addition to the spread of the centers of the Jordanian Family Planning and Protection Association, the Relief and Works Agency and the private medical sector.

# 2.2 The response of the Population Census 2015 for measuring maternal mortality:

In response of the Department of Statistics for International Benefits on providing significant indicators according to international recommendations and standards in terms of accuracy and comprehensiveness and taking advantage of the opportunities offered by the general population census, had decided for the first time to provide comprehensive data on maternal mortality in the Kingdom. The family mortality monitoring form developed during the 24 months prior to the census and contains the following questions:

- Has a family member died during the 24 months prior to the census?
- Is the death reported?
- The nationality of the deceased (male/female).
- Age at death.

In order to determine maternal mortality, a set of questions has been formulated reflecting the international definition of maternal mortality, which states that:

Maternal mortality: Death occurring for a woman during pregnancy, during childbirth or within 42 days after pregnancy, regardless of the period or place of pregnancy, for any reason whether as a result of the pregnancy itself, or as a result of an exacerbation of another cause of pregnancy, or

as a result of medical care received by a woman during pregnancy. This excludes deaths due to accidents or accidental causes other than pregnancy and childbirth.

The main measures of maternal mortality are the maternal mortality rate (MMR). It is defined as the number of maternal deaths due to pregnancy and childbirth, calculated per 100,000 births within a given year.

The questions on female mortality recorded in the census form, which accurately reflect the definition of maternal mortality, have been formulated, It was restricted only to women who died between 13 and 54 years of age at the time of death, in preparation for this set of questions, including:

- Marital status in the event of death, as pregnancy and reproduction in Jordanian society is restricted to married women or former spouses (divorced women, widows and separated). then asked whether the woman is:
- Pregnant at death? Or that:
- Death occurred during birth? Or that:
- Death occurred within 42 days of birth?

In order to comply strictly with the criteria, a question was added to determine the circumstances of death and whether the outcome of pregnancy and childbirth was to exclude cases that occurred for other reasons, such as accidents.

• Was the death due to a traffic accident, a fall, a fire, etc.?

### 2.3 Results:

The data provided by the population and housing census 2015, formed the basis for calculating maternal mortality. Since this is a highly sensitive number because of the scarcity of cases, the Department of Statistics has considered that an additional step should be taken to achieve accuracy and quality. A specialized technical team has been formed to verify the integrity and accuracy of the individual data collected during the counting phase on the observed maternal deaths, especially since the large number and varying backgrounds of field researchers during the population count may affect the margin of error that should be very narrow. Thus, 164 families, who reported to have maternal deaths in the 24 months prior to the census, were contacted and visited In Amman, Balqa, Zarqa, Madaba, Irbid, Mafraq, Ajloun, Jerash and 22 families in the southern governorates were contacted, the total number of 186 families distributed to 7 families in Aqaba ,11 in Karak and 4 in Maan.

The results of this phase can be summarized for accuracy and quality adjustment as follows:

**First:** 57 cases were excluded for various reasons, including the existence of some cases outside the time-release period or other diseases that led to death such as cancer, lung damage, etc. and are not related to pregnancy and reproduction.

Second: There were 25 maternal deaths due to an accident.

Third: There were 39 maternal deaths during pregnancy.

Fourth: There were 33 maternal deaths during childbirth.

Fifth: Maternal mortality during 42 days of birth (puerperal) was 32.

The total number of maternal mortality observed and confirmed during the 24-month period prior to the census and for women, aged 13-54, all of them relate to pregnancy and reproduction except in cases that occurred as a result of accidents, 104 cases including Jordanians and non-Jordanians.

# 2.4 Births:

Births are the equivalent used to calculate maternal mortality. Civil Status Department records have been relied on to provide these numbers and individual years since 2011. Table 1 shows the number of male and female infants, both Jordanian and non-Jordanian, by year. The results of the evaluation analysis indicate that the sex rate at birth was about 105, which is consistent with expectations. In other words, there is no shortage of birth registration. Figure 1 shows the pattern of births registered between 2011 and 2015, and it is shown that the number of births is increasing, especially in recent years (2014 and 2015), especially non-Jordanians, mostly due to the presence of Syrians.

| Veen  | Jordanians |         |        | Non-Jordanians |         |       | Total Population |         |        |
|-------|------------|---------|--------|----------------|---------|-------|------------------|---------|--------|
| y ear | Males      | Females | Total  | Males          | Females | Total | Males            | Females | Total  |
| 2011  | 94072      | 88778   | 182850 | 6080           | 5805    | 11885 | 100152           | 94583   | 194735 |
| 2012  | 92178      | 87826   | 180004 | 7084           | 6645    | 13729 | 99262            | 94471   | 193733 |
| 2013  | 89103      | 84646   | 173749 | 11818          | 11139   | 22957 | 100921           | 95785   | 196706 |
| 2014  | 90043      | 85548   | 175591 | 15313          | 14405   | 29718 | 105356           | 99953   | 205309 |
| 2015  | 93435      | 88290   | 181725 | 16535          | 15738   | 32273 | 109970           | 104028  | 213998 |

Table 1: Births by sex, year of registration of Jordanians and total population

Source: Civil Status Department

#### Figure 1: Births by year for Jordanians and the total population



Source: Civil Status Department

# 2.5 Maternal Mortality Rate (MMR):

The total number of female mortality collected for the 24 months prior to the census was approximately 104 for 2014 and 2015. Thus, the number of births was 205309 for 2014 compared to 213998 for 2015. It may be more appropriate to divide the total maternal mortality rate from 24 months by the total of births for 2014 and 2015 to get the average of two years. Consequently, the maternal mortality rate (MMR) was about 25 deaths per 100,000 live births. This is not far from the previous estimates prepared by the Supreme Population Council for several years.

# **Chapter 3**

# The completion of Reporting Adult Mortality

### **3.1 General background:**

Adult mortality is an essential part of the mortality matrix disaggregated by sex and age, which enables the extraction of many important indicators, such as disaggregated mortality rates by sex and age, including deaths of the elderly, population of working age, adolescents, child and infant mortality; this is in addition to building community life tables, as these provide various detailed indicators of mortality used in various areas such as human development benchmarks and indicators, population projections, actuarial studies and others, as these indicators express themselves about the level of well-being and progress in societies.

There are many ways to analyze adult mortality in demography, such as the method of orphan hood, which aims to convert the percentage of people who live with their mother by age group to female survival (conditional probabilities), and also to convert the percentage of people who live by age group to male survival.

The second method in the analysis of adult mortality is widowhood, which aims to transform the rate of non-widowers from the first husband into conditional possibilities for survival for males, and is used to convert the percentage of widowers from the first wife to female conditional surviving probabilities.

Both methods are effective for estimating the level of adult mortality, especially since data collected from the population are simple and easily answered; therefore, the magnitude of the expected error remains within a narrow range. However, it requires special data collection information so that it cannot be used based on available data.

Another method of estimating adult mortality is the method of completion of reporting mortality, which focuses on the use of up-to-date information on deaths occurring within a given time period and can be used both for males and females, their importance lies in their interest in vital registration data with regard to mortality, but there is a lack of (incomplete) reporting of deaths and there is a disparity in the levels of failure in the civil mortality register.

Correction factors are used to estimate the total number of deaths by age group for males and females, as well as data provided by the population and housing census 2015, on the one hand, and civil status, on the other, at the level of the Kingdom.

# **3.2 Measurement of Adult Mortality:**

The population and housing census 2015 provided tables on the age and gender distribution of deaths in the community in 24 months prior to the census. Deaths after 10 years of age have been approved. Deaths before the age of 10 are more prone to deficiency than other categories, and therefore it is difficult to rely mainly on them for this type of in-depth analysis.

The records of the Civil Status and Passport Department also provide information similar to that provided by the census on deaths occurring during each year by age at death and sex. They have therefore been used as an independent source for independent comparative purposes and to ensure the effectiveness of information and analytical methods. However, both sources face difficulties in the level of coverage. For example, census data suffer from a lack of data on deaths that are not reported during the population count for any reason and therefore have a degree of deficiency. On the other hand, the data provided by the Civil Status and Passports Service are limited to the cases that are reported and eventually arrive in the records of vital events, and therefore also suffer from a degree of deficiency. However, the records of the Civil Status and Passport Department are characterized by the general population and housing census in their ability to provide this type of data annually, while the census is provided only once every 10 years at best.

In any case, both the census and the records of the Civil Status Service are separate sources, each of which can be analyzed and the degree of completeness and limitations of each of which can be determined independently. Accordingly, one of the most important outputs of this study is the establishment of the common basis among the two sources, which enables the use of civil status and passport data annually and the issuance of indicators on this subject annually.

There are two standard methods for estimating the completeness of adult mortality reporting: The Brass Growth Balance Technique, and the Preston- Coale technique.

#### **3.2.1 Brass Technique**

Brass has developed this method to estimate the completeness of the registration of deaths, the idea of the method is that the population growth rate is the difference between the birth rate and the mortality rate divided by the total population in the middle of the year.

Where:

**r:** Population growth rate

**B:** Number of births within a year

D: Number of deaths within a year

**P:** Total population in mid-year

The birth rate is already defined as the percentage of the population entering a society of 0 or more years of birth and includes society from any age.

Thus, the birth rate of this community is defined as( N(x) / n(x+)) so that:

N(x): Means population in the age of x

n(x+): Total population from age x

The mortality rate can be calculated for the same community by dividing the number of deaths (age x) or more within a year, by the total population for the same age of x or more.

$$r(x+) = N(x) / N(x+) - D(x+) / N(x+)$$

This equation can be applied to each age group, so that the birth rate, mortality and growth rate of all age groups can be calculated.

#### **3.2.2 Preston-Coale Technique:**

This method relies on the fact that the population of a particular age will die from this age and later age. For example, the population aged 10 will die in that age or later until the last person in that age group dies at any later age, and the population in the  $N^{(x)}$  age group will be estimated using a cumulative method of mortality from the age group and then compared with the actual number of the population in the same age group, and the population can be estimated to reach an advanced age group. Since the population increases in size at a constant rate of growth, this must be considered when estimating the population at each age, thus obtaining a series of estimated  $N^{(x)}$  that can be compared to actual values and calculating  $n^{(x)}/n(x)$  rate.

The summary of calculations for this method is as follows:

First we divide the population's mortality by (2) for the calculation of deaths for one year.

Then the population is estimated at the beginning age of the last age group (open group)  $N^(a)$ . Mortality classified in the last age group at +80 years in the first step so the population is estimated at +80 years using the following equation:

$$N^{\wedge}(a) = D(a+) + exp \ (r^*z(a))$$

Where:

D (a+): Number of deaths in age (a) or more.

Z (a): A factor specific to society and age that can be calculated using the following equation:

r : Population growth rate.

#### (Z(a)=a(A)+b(A)\*r+c(A)\*exp(D(45+)/D(10+))

The special transactions for each age group are fixed from the model west<sup>1</sup> table (a(A),b(A),c(A)) ((D(45+)/D(10+)): The percentage of those who were aged 45 years or older to those who were aged 10 years or more:

(exp): Means the normal Logitech of the rate.

At the beginning of each five-year age group, the population is estimated at the age of (+80) as an open group.

<sup>&</sup>lt;sup>1</sup> MANUAL (X) 1993 U.N

#### $N^{(80)}=D(80)^{*}(exp(z^{*}r))$

Depending on them, the population at the age of 75 is estimated at  $N^{(75)}$  using the population estimated for the age group (75-79)D years In addition to the stability of the population growth rate according to the following equation:

 $N^{(x)} = N(x+5)^{*}exp (5r) + 5Dx^{*}exp (2.5r)$  $N^{(75)} = N(80)^{*}exp(5r) + 5D75^{*}exp(2.5r)$  $N^{(70)} = N(75)^{*}exp(5r) + 5D75^{*}exp(2.5r)$ 

Thus up to the age of 5:

 $N^{(05)=N(10)*exp(5r)+5D(5)*exp(2.5r)}$ 

Because the N<sup>(X)</sup> values are calculated for individual years, they are subject to a degree of volatility due to the lack of accuracy in the information among different age groups. In order to minimize the impact, rates for the cumulative age group from age (X) up to age(A) can be calculated by grouping the estimated and actual values separately, then calculating N<sup>(X)</sup>/N(X) and then taking the median value of these rates to reflect the overall completeness.

The completeness ratio is the data correction factor calculated by dividing 1 by the median value the have the correction factor and then multiplying the mortality correction factor by one year per year by age, using correction factors, we estimate the total number of deaths by male and female age groups by dividing the number of deaths corrected per age group by the total population of each age group.

# Table 2: Summary of the calculation of the degree of completeness of the registration of mortality and the corrected mortality rate

|    | Total population census        |                |                                |                | Jordanian Census               |                |                                |                | Civil Status              |                |                                |                |
|----|--------------------------------|----------------|--------------------------------|----------------|--------------------------------|----------------|--------------------------------|----------------|---------------------------|----------------|--------------------------------|----------------|
|    | Males                          |                | Females                        |                | Males                          |                | Females                        |                | Males                     |                | Females                        |                |
| X  | corrected<br>mortality<br>rate | N^(x)/<br>N(x) | corrected<br>mortality<br>rate | N^(x)/N(<br>x) | corrected<br>mortality<br>rate | N^(x)/N<br>(x) | corrected<br>mortality<br>rate | N^(x)/N<br>(x) | معدل<br>الوفيات<br>المصحح | N^(x)/N(<br>x) | corrected<br>mortality<br>rate | N^(x)/<br>N(x) |
| 5  | 1.2                            | 0.477          | 1.25                           | 0.287          | 1.15                           | 0.595          | 1.17                           | 0.353          | 0.625                     | 0.728          | 0.575                          | 0.626          |
| 10 | 0.9                            | 0.436          | 1.02                           | 0.264          | 0.88                           | 0.535          | 0.99                           | 0.318          | 0.585                     | 0.655          | 0.443                          | 0.566          |
| 15 | 1.4                            | 0.427          | 1.07                           | 0.263          | 1.35                           | 0.514          | 1.06                           | 0.309          | 0.86                      | 0.63           | 0.584                          | 0.551          |
| 20 | 2                              | 0.388          | 1.27                           | 0.25           | 2                              | 0.475          | 1.27                           | 0.29           | 1.279                     | 0.584          | 0.711                          | 0.519          |
| 25 | 2                              | 0.367          | 1.43                           | 0.242          | 1.97                           | 0.474          | 1.45                           | 0.29           | 1.61                      | 0.585          | 1.01                           | 0.52           |
| 30 | 2.5                            | 0.371          | 1.89                           | 0.239          | 2.48                           | 0.504          | 2.01                           | 0.293          | 2.08                      | 0.623          | 1.35                           | 0.527          |
| 35 | 3                              | 0.365          | 2.32                           | 0.234          | 3.33                           | 0.497          | 2.05                           | 0.279          | 2.67                      | 0.615          | 1.51                           | 0.503          |

| 40     | 5.1    | 0.358 | 4.07   | 0.234 | 5.23   | 0.474 | 3.83   | 0.267 | 3.75  | 0.589 | 2.4    | 0.484 |
|--------|--------|-------|--------|-------|--------|-------|--------|-------|-------|-------|--------|-------|
| 45     | 7.5    | 0.356 | 5.76   | 0.239 | 7.83   | 0.454 | 5.13   | 0.261 | 6.51  | 0.569 | 3.64   | 0.476 |
| 50     | 13.7   | 0.378 | 11.17  | 0.257 | 13.45  | 0.466 | 9.76   | 0.274 | 10.56 | 0.588 | 6.02   | 0.505 |
| 55     | 21.1   | 0.438 | 15.48  | 0.291 | 20.57  | 0.525 | 13.93  | 0.312 | 17.84 | 0.673 | 11.11  | 0.587 |
| 60     | 37.7   | 0.519 | 32.89  | 0.342 | 35.97  | 0.606 | 30.35  | 0.37  | 24.64 | 0.788 | 21.11  | 0.707 |
| 65     | 46.5   | 0.555 | 38.79  | 0.359 | 43.15  | 0.629 | 35.5   | 0.389 | 40.29 | 0.86  | 33.33  | 0.774 |
| 70     | 81.8   | 0.525 | 77.44  | 0.355 | 72.34  | 0.582 | 70.72  | 0.381 | 66.67 | 0.818 | 61.03  | 0.776 |
| 75     | 98.1   | 0.46  | 89.71  | 0.345 | 86.06  | 0.494 | 81.39  | 0.364 | 104.7 | 0.746 | 98.26  | 0.801 |
| 80+    | 195    | 0.394 | 212.56 | 0.292 | 166.61 | 0.413 | 193.32 | 0.31  | 199.3 | 0.621 | 234.99 | 0.684 |
| Median |        | 0.41  |        | 0.26  |        | 0.5   |        | 0.31  |       | 0.63  |        | 0.56  |
| corr   | ection | 2.44  | 3      | .8    | 2      | 2     | 3.     | 23    | 1     | .6    | 1.7    | 9     |
| fa     | ctor   |       |        |       |        |       |        |       |       |       |        |       |

Detailed corrected mortality rate = corrected mortality number per age group/total population per age group.

Detailed mortality rates are useful in estimating the number of deaths in society during a given period of time for different age groups, and in order to be used to build life tables, they must be converted into conditional probabilities. The conditional is intended to mean that a person who has reached a certain age may die within a specified period of time thereafter.

# **3.3** The relationship between rate and probability:

The rate of mortality for an age group is attributed to the population in the age group represented by the number in the middle of the age group.

The probability is that the number of deaths within a period of time to the population is estimated at a certain age.

The rate is similar to the probability of death in the age pattern, both of which are high immediately after birth and begin to decline rapidly until it reaches the lowest level between ages 10 and 25, then it starts with gradual rise and then accelerated after age 50.

For the method of conversion from rates to death probabilities, it is done by using mathematical equations specifically derived for this purpose and are circulating between demographers, and the equation used in the report is as follows:

$$_{n}q_{x}=5*_{n}m_{x}(1+2.5*_{n}m_{x})$$

Where:

- $_{n}\mathbf{m}_{x}$  :Death rate for age x to x+n
- $_{n}\mathbf{q}_{x}$ : probability of x to x+n age
- **n:** The length of the age group is (5).

## **Chapter 4**

#### Linking between adult mortality and child mortality

For the purposes of linking infant and under-five mortality to adult mortality, separate data are required for each. We have previously provided corrected adult mortality rates based on the results of the census-provided adult mortality test provided by the Civil Status and Passport Department for the same period and then corrected it. In this chapter, the other complementary part concerning child and infant mortality will be provided from independent sources of health and demographic surveys carried out by The Department of Statistics over the past decades (The Jordan Population and Family Health Survey - JPHFS).

#### 4.1 Child and Infant Mortality:

Infant mortality is the mortality of children before the age of five, infant mortality occurs when a child dies after birth, and before the child reaches the first year of life.

The risks of child mortality are highest in the neonatal period, that is, in the first 28 days of their life, and care during pregnancy and childbirth must be ensured, and effective birth care services should be provided to infants to reduce the percentage of such deaths. Table 3 and Figure 2 show the levels and trends of infant mortality in the Kingdom during the previous periods since the early 1980s, according to population and family health surveys from 1990 to 2012.

| Period | Population and |
|--------|----------------|----------------|----------------|----------------|----------------|
| before | family health  |
| the    | survey 1990    | survey 1997    | survey 2002    | survey 2007    | survey 2012    |
| survey |                |                |                |                |                |
| 4-0    | 33.8           | 28.5           | 22.0           | 19.0           | 17.0           |
| 9-5    | 39.9           | 29.6           | 27.0           | 21.0           | 18.0           |
| 14-10  | 41.7           | 38.0           | 28.0           | 23.0           | 30.0           |

|          | TO     | 4 1.4      | 4 1       |     |          | 1 4 * | ,  | • •     | •     | . 1     |         |
|----------|--------|------------|-----------|-----|----------|-------|----|---------|-------|---------|---------|
| Table 3: | Infant | mortality  | z rates l | nv  | source a | nd fi | me | periods | prior | to each | survey  |
| Lable C. |        | inor cancy | Interest  | · J | source a |       |    | Perious | PIIVI | to caen | bui vej |

Source: Department of Statistics



Figure 2: Infant mortality rates by source and time periods prior to each survey

Source: Department of Statistics

| Table 4: Under-five mortality rates by | source and time | periods prior | to each survey |
|----------------------------------------|-----------------|---------------|----------------|
|----------------------------------------|-----------------|---------------|----------------|

| time period<br>prior to the<br>survey | 1997 | 2002 | 2007 | 2012 |
|---------------------------------------|------|------|------|------|
| 4-0                                   | 34.2 | 27   | 21   | 21   |
| 9-5                                   | 33.7 | 31   | 24   | 20   |
| 14-10                                 | 42   | 30   | 26   | 34   |



Figure 3: Mortality rates for children under five by source and time periods prior to each survey

Using the linear equation based on information from previous surveys, the infant mortality rate for 2015 is estimated at 18.4 per 1,000 live births for males, compared to 15.8 per 1,000 births for females. Similarly, the under-five mortality rate for males is 20.4 per 1,000 male births, compared to 17.6 per 1,000 female births. Infant mortality rates for both males and females will be relied upon to link with adult mortality.

#### 4.2 Linking the level of child mortality to adult mortality:

This is the process of linking child mortality levels to adult mortality, expressed in the 10-yearold mortality rate from census data, civil status and passports data after being corrected and then converted to the probabilities of conditional mortality in order to link child and infant mortality derived from data provided by the Kingdom's Population and Family Health Surveys over the past decades.

#### **4.2.1 linkage using the Logit model:**

The Logit model is used to handle non-linear relationships in order to bring them closer to reliable linear equations in written estimates. The relationship between morality levels (expressed in mortality rates at each age group, or morality probabilities at each age) and age is considered non-linear, beginning high at the early ages after delivery and gradually lowering to the lowest levels during the second decade of life and then gradually decreasing with age until it accelerates after the sixth or seventh decade.

It is used to establish a linear relationship between the level (probabilities/rates) of infant mortality with the level of mortality of adults after 10 years of age and the different age groups with the potential for probability for conditional survival between 10 years of age and each subsequent age. This is done after the infant mortality rate has been converted to the probability of survival to the end of the first year of the child's life, and then into a logit value for this probability using the equation, as is the probability of survival from 10 years to the rest of the life using the same equation:

Logit 
$$_{n}p_{x} = (Ln ((1 - _{n}p_{x})/_{n}p_{x}))/2$$

Where:

 $_{n}p_{x}$ : The probability of survival from age x to x+n.

This applies to infant, child and adult mortality after 10 years of age. For example, infants' probability of survival (P0) and probability of survival from age 10 to  $15_5P_{10}$ , 10 to 20,  $_{10}P_{10}$ , and so on;

For the purposes of the linkage, similar survival probabilities are used from standard life tables that are considered complete for all age groups since birth, besides completing the information gaps from birth to age after 5 years and 10 years, in addition to correcting the gaps that may occur as a result of fluctuations in different age groups.

Then, the probability of mortality is converted to the possibility of survival, and the value of a representative of childhood mortality, which is the probability of survival until 10 years, and the group of possibilities of survival estimated after being linked to a fixed age, and the probability of survival between the ages is the result of a life-sustaining beating between the ages.

Linking is usually used by the logistics system and the possibilities of survival up to the different ages of the model life scales and aims at finding a kind of linear relationship that links the model life tables to life scales in Jordan according to the following equation:

$$Y'_{x} = \alpha + \beta Y'_{x}$$

Where:

Y<sup>x</sup>: The logit value for survival probabilities from birth to age (x) in Jordan.

 $\alpha$ : Expresses the general level of mortality.

β: Expresses the strength of the relationship between childhood mortality and adult mortality.

 $Y_{x}^{s}$ : The logit value of survival probabilities from birth to age x in model life tables.

#### Attempts to establish the formula for linking child mortality and adult mortality:

The series of attempts to establish a correlation between child mortality and adult mortality based on model life tables (group west).

| Results | Results of multiple attempts to reach an estimate of (Yx) values using model (west)<br>total population census tables (male and female) |          |          |          |          |          |  |  |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|--|--|--|--|--|--|--|
| Attempt |                                                                                                                                         | Males    |          |          | Females  |          |  |  |  |  |  |  |  |
| α       |                                                                                                                                         | β        | 110      | α        | β        | 110      |  |  |  |  |  |  |  |
| 1       | -0.078                                                                                                                                  | 1        | 0.976892 | 0.021    | 1        | 0.980458 |  |  |  |  |  |  |  |
| 2       | -0.45488                                                                                                                                | 0.802725 | 0.975326 | -0.40339 | 0.796641 | 0.979381 |  |  |  |  |  |  |  |
| 3       | -0.32309                                                                                                                                | 0.87171  | 0.972254 | -0.24362 | 0.873201 | 0.97759  |  |  |  |  |  |  |  |
| 4       | -0.23929                                                                                                                                | 0.915574 | 0.968025 | -0.14473 | 0.920585 | 0.975024 |  |  |  |  |  |  |  |
| 5       | -0.18552                                                                                                                                | 0.943722 | 0.963872 | -0.0829  | 0.950211 | 0.971788 |  |  |  |  |  |  |  |
| 6       | -0.15082                                                                                                                                | 0.961883 | 0.959224 | -0.04402 | 0.968844 | 0.967625 |  |  |  |  |  |  |  |
| 7       | -0.12836                                                                                                                                | 0.97364  | 0.953134 | -0.01948 | 0.980604 | 0.961814 |  |  |  |  |  |  |  |
| 8       | -0.11379                                                                                                                                | 0.981267 | 0.943788 | -0.00396 | 0.988041 | 0.953022 |  |  |  |  |  |  |  |
| 9       | -0.10433                                                                                                                                | 0.986222 | 0.927887 | 0.005873 | 0.992752 | 0.938701 |  |  |  |  |  |  |  |
| 10      | -0.09817                                                                                                                                | 0.989444 | 0.901655 | 0.012104 | 0.995737 | 0.916677 |  |  |  |  |  |  |  |
| 11      | -0.09417                                                                                                                                | 0.991539 | 0.858306 | 0.016055 | 0.997631 | 0.882824 |  |  |  |  |  |  |  |

 Table 5: Multiple attempts using life tables (west) total population

### **Estimation Equation Males:**

 $Y'_{(x)} = -0.09817 + 0.98944 * Y'_{(x)}$ 

**Estimation Equation Females:** 

 $Y^{(x)} = 0.01210 + 0.99574* Y^{s}_{(x)}$ 

| Results of multiple attempts to reach an estimate of (Yx) values using model life tables<br>(west) Jordanian census (males and females) |          |          |          |          |          |          |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|--|--|--|--|--|--|
| Attempt                                                                                                                                 |          | Females  |          |          | Males    |          |  |  |  |  |  |  |
|                                                                                                                                         | α        | β        | 110      | α        | β        | 110      |  |  |  |  |  |  |
| 1                                                                                                                                       | 0.021    | 1        | 0.980461 | -0.078   | 1        | 0.976893 |  |  |  |  |  |  |
| 2                                                                                                                                       | -0.45148 | 0.773599 | 0.979384 | -0.47015 | 0.794735 | 0.975327 |  |  |  |  |  |  |
| 3                                                                                                                                       | -0.27312 | 0.859064 | 0.977595 | -0.33273 | 0.866663 | 0.972256 |  |  |  |  |  |  |
| 4                                                                                                                                       | -0.16309 | 0.911789 | 0.975031 | -0.24546 | 0.912348 | 0.968029 |  |  |  |  |  |  |
| 5                                                                                                                                       | -0.09442 | 0.944696 | 0.971797 | -0.18949 | 0.941645 | 0.963878 |  |  |  |  |  |  |
| 6                                                                                                                                       | -0.05127 | 0.965369 | 0.967638 | -0.15339 | 0.96054  | 0.959232 |  |  |  |  |  |  |
| 7                                                                                                                                       | -0.02406 | 0.978408 | 0.961833 | -0.13003 | 0.97277  | 0.953144 |  |  |  |  |  |  |
| 8                                                                                                                                       | -0.00686 | 0.986652 | 0.953051 | -0.11487 | 0.980702 | 0.943802 |  |  |  |  |  |  |
| 9                                                                                                                                       | 0.004036 | 0.991871 | 0.938747 | -0.10503 | 0.985855 | 0.92791  |  |  |  |  |  |  |
| 10                                                                                                                                      | 0.010939 | 0.995179 | 0.916751 | -0.09863 | 0.989205 | 0.901693 |  |  |  |  |  |  |
| 11                                                                                                                                      | 0.015316 | 0.995179 | 0.882946 | -0.09446 | 0.991384 | 0.858369 |  |  |  |  |  |  |

| Table 6: Multiple attem | pts using Life Table | s (West) to Jordanian census |
|-------------------------|----------------------|------------------------------|
|-------------------------|----------------------|------------------------------|

### **Estimation Equation Males:**

 $Y_{(x)}^{^{}}$  = -0.09863 + 0.98920\*  $Y_{(x)}^{^{s}}$ Estimation Equation Females:

 $Y'_{(x)} = 0.01093 + 0.99517* Y'_{(x)}$ 

Table 7: Multiple attempts using the life tables (west) for Civil Status and Passports

| Results of multiple attempts to reach an estimate of (yx) values using model life tables (west) of<br>Civil Status and Passports (males and females) |          |          |                 |          |          |                 |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------------|----------|----------|-----------------|--|--|--|--|--|--|
| Attempt                                                                                                                                              |          | Females  |                 |          | Males    |                 |  |  |  |  |  |  |
|                                                                                                                                                      | a        |          | l <sub>10</sub> | α        | β        | l <sub>10</sub> |  |  |  |  |  |  |
| 1                                                                                                                                                    | 0.021    | 1.0000   | 0.980469        | -0.078   | 1        | 0.976903        |  |  |  |  |  |  |
| 2                                                                                                                                                    | -0.63296 | 0.686635 | 0.979396        | -0.58866 | 0.7327   | 0.975341        |  |  |  |  |  |  |
| 3                                                                                                                                                    | -0.38328 | 0.806278 | 0.977611        | -0.40711 | 0.827732 | 0.972277        |  |  |  |  |  |  |
| 4                                                                                                                                                    | -0.23124 | 0.879131 | 0.975054        | -0.29283 | 0.887551 | 0.968061        |  |  |  |  |  |  |
| 5                                                                                                                                                    | -0.13702 | 0.92428  | 0.971831        | -0.21992 | 0.925717 | 0.963922        |  |  |  |  |  |  |
| 6                                                                                                                                                    | -0.07806 | 0.952531 | 0.967685        | -0.17303 | 0.950258 | 0.959291        |  |  |  |  |  |  |
| 7                                                                                                                                                    | -0.04097 | 0.970307 | 0.961901        | -0.14275 | 0.96611  | 0.953224        |  |  |  |  |  |  |
| 8                                                                                                                                                    | -0.01755 | 0.981528 | 0.953154        | -0.12313 | 0.976381 | 0.943915        |  |  |  |  |  |  |
| 9                                                                                                                                                    | -0.00274 | 0.988626 | 0.938913        | -0.11039 | 0.983047 | 0.928085        |  |  |  |  |  |  |
| 10                                                                                                                                                   | 0.006647 | 0.993122 | 0.917024        | -0.10212 | 0.987379 | 0.90198         |  |  |  |  |  |  |
| 11                                                                                                                                                   | 0.012594 | 0.995972 | 0.883396        | -0.09673 | 0.990196 | 0.858857        |  |  |  |  |  |  |

#### **Estimation Equation Males:**

$$Y'_{(x)} = -0.10212 + 0.98738 * Y'_{(x)}$$

#### **Estimation Equation Females:**

 $Y'_{(x)} = 0.00664 + 0.99312* Y'_{(x)}$ 

#### Chapter 5

#### **Life Tables**

#### 5.1 Background on Life Tables:

Life Table in demography is defined as the table that shows each age what is the probability that a person in this age will die before his or her next birthday "the probability of survival". That is, it represents the probability of survival of a particular population group.

Life Tables are the simplest and most efficient basic tools of scientific analysis used to measure the phenomenon of mortality, and their basic idea is to follow the life of a regiment or a virtual group of births from the beginning of their birth to the death of the last person in them. The simplest definition of the life table is that it is a history of a virtual group of people born at the same time and subject to gradual death due to different causes at each age, there are two basic elements for the formation of life tables:

<u>- The first basis</u>: an actual set of births must be followed from birth to death, life tables of this type are known as Life of a regiment, and there is a clear practical difficulty in establishing them, as this requires a very long time to gather this type of information.

<u>Base two:</u> It depends on the use of actual death levels for all populations of different age groups over a given period of time in the composition of the tables, known as the life tables of the period, which is the most commonly, used type in practice.

Whether life tables are type one or type two, there are several basic assumptions that are subject to the configuration and use conditions of the tables which are:

1. The virtual population group is a closed society, that is, it is not affected by the migration factor, as there are no influences through migration and the only effect is mortality.

2. The level of mortality at any age or age group is constant and does not change over time.

3. The number of deaths at any age or age group during the year is evenly distributed throughout the year.

Thus, the life table is only a simplified digital image of a virtual society characterized by stillness or interrupted because of the stability of the number of births from year to another, the equal number of annual deaths with the number of annual births, also due to the stability of the death rates for each age in it, that is, we assume in the construction of this table that fertility, mortality and total size are always stable, but the life table is related to a specific period of time, which limits the impact of these assumptions on the accuracy of their use.

The life table is a useful tool in measuring the level and pattern of mortality, analyzing fertility, migration, population pyramid and population projections related to population size, composition and changes, analyzing the different social and economic characteristics of the population, such as marital status, labor force and educational status, and the life tables can be used to monitor any time-related phenomenon, and, on the other hand, creating life tables for society at the national level and for groups of the population, such as males, females, urban, rural and other.

From this standpoint, a number of conclusions can be drawn:

- Probability of surviving at any particular year of age.
- Average life expectancy remaining for the population of different ages.

Life tables are widely used, the period in which each child is born varies from one individual to another, but the life cycle does not differ from one individual to another if it is naturally completed, since it begins with childhood to youth stage, then aging. When a person dies during or before reaching any stage, this is because of accidents and diseases, and death may be without those accidental causes, death is a right on every human being, man has a natural period of life and a certain end of life, and although it is not possible to predict in advance the life of each individual, it can be predicted on average, that he does not exceed a certain limit, Or that the maximum age that a person can reach is one hundred years.

This prediction is not only different from one individual to another, but also different from one community to another, from one country to another, and although life is different from one person to another, it is possible to depict the general situation of a group of people, household or occupation, by building life tables, and we do not mean each person individually, but we mean the general picture of life of each group, as these tables help us to answer some specific questions that aim to infer the length of life at certain ages, like wondering how many of those who reached their first year of age were among a group of specific births or about those who reached the age of 10, 20 or 40... Etc. So, if death takes all these births to the last one, we wonder how many years these births have lived over time until they are all gone, and then finally we get the average length of life or age per person.

#### **5.2 Building life tables:**

The importance of life tables lies in many areas, including health and economic areas, and on the other hand, they can be adopted to identify the prevailing patterns of mortality in society and gender disparities in the prospects for survival and mortality by age.

Life tables are an integrated method for analyzing detailed mortality rates and demographic analysis to accurately reflect this relationship, where infant and under-five mortality has been linked to adult mortality through the use of the logit model and the creation of an initial relationship between survival probabilities from birth to age (x) in standard life tables, and survival probabilities in Jordan.

The process of building life tables for both males and females has taken place at the level of the Kingdom based on the results of the linkage process, as we have a basic database to begin building life tables as follows:

1. Determine the appropriate pattern of mortality in Jordan, use the values corresponding to the specified level and convert them into conditional values based on age 10.

2. Finding a detailed mortality rate  $\binom{n}{M_x}$  by dividing the corrected number of deaths at a specific age (calculated by other detailed equations), by the number of individuals in that age for both males and females separately.  $\binom{n}{M_x}$  = the corrected number of deaths at age(x)/number of individuals at age(x).

Corrected number of deaths = correction factor multiplied by total population mortality resulting in a probability of death completion value given that correction factor is the division of 1/median resulting from  $N^{(x)}_{(x)}/N_{(x)}$  division.

3. Calculate the probability of death value between two specific years based on the death rate values and using the following equation:-

$$_{n}q_{x} = (n*_{n}M_{x})/(1+2.5*_{n}M_{x})$$

The base of the calculation is the  ${}_{n}q_{x}$  column in the life table and this equation is used for all age groups above the first year, while in the open age group the probability of death is 1 because every person who reaches a certain age must die after that age.

4. Convert  ${}_{n}q_{x}$  death probability to survival probability using the relationship:

$$_{n}p_{x} = 1 - _{n}q_{x}$$

And convert it into conditional values at age 10.

5. Find the logit value for survival probabilities by applying the logit equation used for linkage:

Logit 
$$_{n}p_{x} = (Ln((1 - _{n}p_{x})/_{n}p_{x}))/2$$

6. Estimate the  $Y_x^s$  values based on the values of the standard  $l_x^s$  tables, and also estimate them based on the conditional standard  $l_x^s$  values to find the  $Y_{x10}^s$  values.

7. Estimate the values of both ( $\alpha$  and  $\beta$ ) to complete the calculation of the logit value for survival probabilities.

- First assume that the value of  $\beta=1$ , and the value of  $\alpha$  equals the difference between the values of  $_{n}p_{x}$  Logit and  $Y_{x}^{s}$  at the age of x=1.

It compensates it to find the initial values of  $\acute{Y}$ :

$$\acute{\mathbf{Y}} = \alpha + \beta * \mathbf{Y}_{x}^{s}$$

- Values  $(l_{x10})$  are then re-estimated using the reversed logit equation and converted to conditional values at age 10.

$$P'_x = 1/(1 + \exp((2*\dot{Y}_{10})))$$

8. Convert conditional survival probabilities to logit values.

9. Calculate  $\beta$  values for different ages, and then find their average by applying the following relationship:

$$\beta = (\text{logit } P_{x}^{*} - \dot{Y}_{x}) / (Y_{x10}^{*} - Y_{x1}^{*})$$

Thus we have created new values of  $\beta$  by which the value of  $2\alpha$  can be found, and retries until both  $\alpha$  and  $\beta$  values are proven.

$$\alpha = \operatorname{logit} P_{x}^{\prime} - \beta 2 * Y_{x}^{s} 1$$

Where:

 $Y_{x}^{s}$ : The logit value of survival probabilities from birth to age (x) in standard life tables.

 $_{x}$ Ý : logit value of survival probabilities from birth to age(x) in Jordan.

- $\alpha$ : Expresses the general level of mortality.
- $\beta$ : Express the strength of the relationship between childhood mortality and adult mortality.

The process of repeating the calculation of logit is until both  $\beta$  and  $\alpha$  values are stabilized. Depending on the values of both  $\beta$  and  $\alpha$ , we create a table to calculate life expectations in the following steps:

1. We take the values of  $Y_x^s$  (Logit Value of Survival Probabilities from Birth to Age (x) estimated from standard tables from the tables calculated based on standard life values in the following equation:

$$Y_{x}^{s} = Ln((1-l_{x})/l_{x})/2$$

2. Then find the value  $y^{\Lambda}_{x}$  (Logit value for survival Probabilities) using  $\alpha$  and  $\beta$  values, which resulted from the stable values after repeated attempts, and  $Y^{s}_{x}$  values represented by the following equation:

$$Y'_{x} = \alpha + B * Y'_{x}$$

3. Then we calculate the survival values of  $_{n}p_{x}$  by the following equation:

$$_{n}p_{x}=1/(1+exp(2*y^{*}x))$$

The value of the regiment is determined by 100K and expressed by  $l_x$ , and then we calculate the value of the surviving regiment by multiplying the values of the regiment for each age group by the survival values of each  $_np_x$  age group.

4. We then calculate the number of years the  ${}_{n}L_{x}$  has for each age group, so the calculation of the age group's years is represented by the following equation:

$$_{n}L_{(0)} = 0.3*l_{(0)} + 0.7*l_{(1)}$$

Calculation of the years of age 1 in the following equation:

$$_{n}L_{(1)} = 1.6*l_{(1)} + 2.4*l_{(5)}$$

All other age groups are calculated in the same equation:

$$_{n}L_{(5)} = 2.5 * (l_{(5)} + l_{(10)})$$

All age groups are calculated to the last age group (open value) and are calculated by the division of  $(l_{80})$  by mortality rate  ${}_{n}M_{(80)}$ .

5. We then calculate the whole regiment of  $t_x$  by the result of adding the values of  ${}_nL_{(80)}$  and  ${}_nL_{(75)}$  cumulatively from the last age group to the first age group(0).

6. We then calculate or find the life expectation  $e_x$  by dividing the regiment years of the total group  $t_x$  by the number of survivals of the regiment for each age group.

$$e_x = t_x/l_x$$

#### The Life Table of the Kingdom (Census/Males):

The infant mortality rate among males was 0.0184 according to the 2015 census survey results and is located in the model life tables (west)at level 23. Life expectancy at birth has been determined using the mathematical completion method to reach 72.5.

| x  | Y <sub>x</sub> | Y <sup>^</sup> x | l <sub>x</sub> | l <sub>x</sub> | <sub>n</sub> L <sub>x</sub> | T <sub>x</sub> | ex    |
|----|----------------|------------------|----------------|----------------|-----------------------------|----------------|-------|
| 0  |                |                  |                | 100000         | 98712                       | 7255240        | 72.47 |
| 1  | -1.91041       | -1.98842         | 0.98160        | 98160          | 391956                      | 7156528        | 72.82 |
| 5  | -1.83611       | -1.91492         | 0.97875        | 97875          | 488910                      | 6764572        | 69.03 |
| 10 | -1.79284       | -1.87213         | 0.97689        | 97689          | 488055                      | 6275662        | 64.16 |
| 15 | -1.75890       | -1.83856         | 0.97533        | 97533          | 486897                      | 5787606        | 59.26 |
| 20 | -1.69801       | -1.77833         | 0.97226        | 97226          | 485072                      | 5300710        | 54.44 |
| 25 | -1.62412       | -1.70525         | 0.96803        | 96803          | 482978                      | 4815637        | 49.66 |
| 30 | -1.56024       | -1.64207         | 0.96388        | 96388          | 480779                      | 4332660        | 44.87 |
| 35 | -1.49664       | -1.57916         | 0.95924        | 95924          | 478096                      | 3851880        | 40.07 |
| 40 | -1.42308       | -1.50640         | 0.95315        | 95315          | 474240                      | 3373784        | 35.31 |
| 45 | -1.32621       | -1.41059         | 0.94381        | 94381          | 467933                      | 2899545        | 30.64 |
| 50 | -1.19175       | -1.27759         | 0.92792        | 92792          | 457408                      | 2431612        | 26.12 |
| 55 | -1.02048       | -1.10819         | 0.90171        | 90171          | 440028                      | 1974204        | 21.81 |
| 60 | -0.81103       | -0.90103         | 0.85840        | 85840          | 412621                      | 1534176        | 17.78 |
| 65 | -0.57620       | -0.66876         | 0.79208        | 79208          | 371404                      | 1121555        | 14.06 |
| 70 | -0.31291       | -0.40834         | 0.69353        | 69353          | 312144                      | 750151         | 10.71 |
| 75 | -0.01182       | -0.11054         | 0.55505        | 55505          | 234092                      | 438007         | 7.76  |
| 80 | 0.34458        | 0.24197          | 0.38132        | 38132          | 203915                      | 203915         | 5.15  |

Table 8: Brief life table of males (population) in Jordan 2015

### **The Life Table of the Kingdom (Census/Females):**

The infant mortality rate among females was 0.0158 according to the 2015 census survey results. This value is located in the model life tables (west)at level 23. Life expectancy at birth was determined using the mathematical completion method to reach 74.

| X  | Y <sub>x</sub> | Y <sup>^</sup> x | l <sub>x</sub> | l <sub>x</sub> | <sub>n</sub> L <sub>x</sub> | T <sub>x</sub> | e <sub>x</sub> |
|----|----------------|------------------|----------------|----------------|-----------------------------|----------------|----------------|
| 0  |                |                  |                | 100000         | 98894                       | 7415039        | 74.00          |
| 1  | -2.08691       | -2.06591         | 0.98420        | 98420          | 393093                      | 7316145        | 74.18          |
| 5  | -2.01337       | -1.99272         | 0.98175        | 98175          | 490554                      | 6923052        | 70.36          |
| 10 | -1.97827       | -1.95779         | 0.98046        | 98046          | 489961                      | 6432498        | 65.45          |
| 15 | -1.95078       | -1.93043         | 0.97938        | 97938          | 489245                      | 5942537        | 60.52          |
| 20 | -1.90803       | -1.88789         | 0.97759        | 97759          | 488156                      | 5453292        | 55.63          |
| 25 | -1.85228       | -1.83240         | 0.97503        | 97503          | 486707                      | 4965136        | 50.77          |
| 30 | -1.78943       | -1.76984         | 0.97180        | 97180          | 484858                      | 4478430        | 45.93          |
| 35 | -1.71815       | -1.69891         | 0.96764        | 96764          | 482367                      | 3993572        | 41.12          |
| 40 | -1.63224       | -1.61341         | 0.96183        | 96183          | 478720                      | 3511205        | 36.35          |
| 45 | -1.52358       | -1.50527         | 0.95305        | 95305          | 472947                      | 3032485        | 31.66          |
| 50 | -1.38237       | -1.36472         | 0.93874        | 93874          | 463871                      | 2559538        | 27.11          |
| 55 | -1.21630       | -1.19945         | 0.91674        | 91674          | 449919                      | 2095667        | 22.70          |
| 60 | -1.02620       | -1.01025         | 0.88293        | 88293          | 428338                      | 1645747        | 18.47          |
| 65 | -0.80922       | -0.79431         | 0.83042        | 83042          | 393935                      | 1217409        | 14.49          |
| 70 | -0.55059       | -0.53690         | 0.74532        | 74532          | 340103                      | 823474         | 10.86          |
| 75 | -0.24662       | -0.23439         | 0.61509        | 61509          | 263272                      | 483370         | 7.63           |
| 80 | 0.11413        | 0.12465          | 0.43800        | 43800          | 220098                      | 220098         | 4.71           |

Table 9: Brief life table of females (population) in Jordan 2015

### Life Table for Jordanians (Census/Males):

The infant mortality rate among males was 0.0184 according to the 2015 census survey results, and this value is located in the model life tables (west)at level 23. Life expectancy at birth has been determined using the mathematical completion method to reach 72.7

| X  | Y <sub>x</sub> | Y <sup>^</sup> <sub>x</sub> | l <sub>x</sub> | l <sub>x</sub> | <sub>n</sub> L <sub>x</sub> | T <sub>x</sub> | e <sub>x</sub> |
|----|----------------|-----------------------------|----------------|----------------|-----------------------------|----------------|----------------|
| 0  |                |                             |                | 100000         | 98712                       | 7279944        | 72.80          |
| 1  | -1.91041       | -1.98842                    | 0.98160        | 98160          | 391956                      | 7181232        | 73.16          |
| 5  | -1.83611       | -1.91491                    | 0.97875        | 97875          | 488910                      | 6789276        | 69.37          |
| 10 | -1.79284       | -1.87212                    | 0.97689        | 97689          | 488055                      | 6300366        | 64.49          |
| 15 | -1.75890       | -1.83854                    | 0.97533        | 97533          | 486896                      | 5812311        | 59.59          |
| 20 | -1.69801       | -1.77831                    | 0.97226        | 97226          | 485071                      | 5325415        | 54.77          |
| 25 | -1.62412       | -1.70522                    | 0.96803        | 96803          | 482977                      | 4840344        | 50.00          |
| 30 | -1.56024       | -1.64203                    | 0.96388        | 96388          | 480777                      | 4357367        | 45.21          |
| 35 | -1.49664       | -1.57912                    | 0.95923        | 95923          | 478094                      | 3876590        | 40.41          |
| 40 | -1.42308       | -1.50635                    | 0.95314        | 95314          | 474237                      | 3398496        | 35.66          |
| 45 | -1.32621       | -1.41052                    | 0.94380        | 94380          | 467928                      | 2924259        | 30.98          |
| 50 | -1.19175       | -1.27751                    | 0.92791        | 92791          | 457401                      | 2456331        | 26.47          |
| 55 | -1.02048       | -1.10809                    | 0.90169        | 90169          | 440015                      | 1998930        | 22.17          |
| 60 | -0.81103       | -0.90091                    | 0.85837        | 85837          | 412600                      | 1558915        | 18.16          |
| 65 | -0.57620       | -0.66861                    | 0.79203        | 79203          | 371372                      | 1146314        | 14.47          |
| 70 | -0.31291       | -0.40816                    | 0.69345        | 69345          | 312098                      | 774943         | 11.18          |
| 75 | -0.01182       | -0.11032                    | 0.55494        | 55494          | 234034                      | 462845         | 8.34           |
| 80 | 0.34458        | 0.24223                     | 0.38120        | 38120          | 228811                      | 228811         | 6.00           |

Table 10: Brief life table of males (census) in Jordan for 2015

#### Life Schedule for Jordanians (census/females):

The infant mortality rate among females was 0.0158 according to the 2015 census survey results. This value is located in the model life tables (west)at level 23. Life expectancy at birth has been determined using the mathematical method of completion to reach 74.2

| X  | Y <sub>x</sub> | Y <sup>^</sup> x | l <sub>x</sub> | l <sub>x</sub> | <sub>n</sub> L <sub>x</sub> | T <sub>x</sub> | e <sub>x</sub> |
|----|----------------|------------------|----------------|----------------|-----------------------------|----------------|----------------|
| 0  |                |                  |                | 100000         | 98894                       | 7421648        | 74.22          |
| 1  | -2.08691       | -2.06591         | 0.98420        | 98420          | 393093                      | 7322754        | 74.40          |
| 5  | -2.01337       | -1.99272         | 0.98175        | 98175          | 490554                      | 6929661        | 70.58          |
| 10 | -1.97827       | -1.95780         | 0.98046        | 98046          | 489961                      | 6439107        | 65.67          |
| 15 | -1.95078       | -1.93044         | 0.97938        | 97938          | 489245                      | 5949146        | 60.74          |
| 20 | -1.90803       | -1.88790         | 0.97759        | 97759          | 488156                      | 5459901        | 55.85          |
| 25 | -1.85228       | -1.83241         | 0.97503        | 97503          | 486707                      | 4971744        | 50.99          |
| 30 | -1.78943       | -1.76986         | 0.97180        | 97180          | 484859                      | 4485038        | 46.15          |
| 35 | -1.71815       | -1.69893         | 0.96764        | 96764          | 482368                      | 4000179        | 41.34          |
| 40 | -1.63224       | -1.61343         | 0.96183        | 96183          | 478721                      | 3517811        | 36.57          |
| 45 | -1.52358       | -1.50530         | 0.95305        | 95305          | 472949                      | 3039090        | 31.89          |
| 50 | -1.38237       | -1.36476         | 0.93875        | 93875          | 463874                      | 2566141        | 27.34          |
| 55 | -1.21630       | -1.19950         | 0.91675        | 91675          | 449924                      | 2102267        | 22.93          |
| 60 | -1.02620       | -1.01031         | 0.88295        | 88295          | 428347                      | 1652343        | 18.71          |
| 65 | -0.80922       | -0.79438         | 0.83044        | 83044          | 393949                      | 1223996        | 14.74          |
| 70 | -0.55059       | -0.53699         | 0.74535        | 74535          | 340125                      | 830047         | 11.14          |
| 75 | -0.24662       | -0.23449         | 0.61514        | 61514          | 263301                      | 489922         | 7.96           |
| 80 | 0.11413        | 0.12452          | 0.43806        | 43806          | 226621                      | 226621         | 5.17           |

Table 11: Brief life table of females (census) in Jordan for 2015
## A life table for Jordanians (civil status/males):

The infant mortality rate among males was 0.0184 according to the 2015 census survey results and is located in the model life tables (west) at level 23. Life expectancy at birth has been determined using the mathematical completion method to reach 72.5.

| X  | Y <sub>x</sub> | Y <sup>^</sup> <sub>x</sub> | l <sub>x</sub> | l <sub>x</sub> | <sub>n</sub> L <sub>x</sub> | T <sub>x</sub> | e <sub>x</sub> |
|----|----------------|-----------------------------|----------------|----------------|-----------------------------|----------------|----------------|
| 0  |                |                             |                | 100000         | 98712                       | 7246499        | 72.46          |
| 1  | -1.91041       | -1.98842                    | 0.98160        | 98160          | 391957                      | 7147787        | 72.82          |
| 5  | -1.83611       | -1.91505                    | 0.97875        | 97875          | 488914                      | 6755831        | 69.02          |
| 10 | -1.79284       | -1.87233                    | 0.97690        | 97690          | 488061                      | 6266917        | 64.15          |
| 15 | -1.75890       | -1.83882                    | 0.97534        | 97534          | 486905                      | 5778856        | 59.25          |
| 20 | -1.69801       | -1.77870                    | 0.97228        | 97228          | 485085                      | 5291951        | 54.43          |
| 25 | -1.62412       | -1.70574                    | 0.96806        | 96806          | 482996                      | 4806866        | 49.65          |
| 30 | -1.56024       | -1.64267                    | 0.96392        | 96392          | 480803                      | 4323871        | 44.86          |
| 35 | -1.49664       | -1.57987                    | 0.95929        | 95929          | 478129                      | 3843067        | 40.06          |
| 40 | -1.42308       | -1.50724                    | 0.95322        | 95322          | 474285                      | 3364939        | 35.30          |
| 45 | -1.32621       | -1.41159                    | 0.94392        | 94392          | 468000                      | 2890654        | 30.62          |
| 50 | -1.19175       | -1.27882                    | 0.92809        | 92809          | 457516                      | 2422654        | 26.10          |
| 55 | -1.02048       | -1.10971                    | 0.90198        | 90198          | 440209                      | 1965137        | 21.79          |
| 60 | -0.81103       | -0.90291                    | 0.85886        | 85886          | 412923                      | 1524928        | 17.76          |
| 65 | -0.57620       | -0.67105                    | 0.79283        | 79283          | 371881                      | 1112005        | 14.03          |
| 70 | -0.31291       | -0.41107                    | 0.69469        | 69469          | 312835                      | 740124         | 10.65          |
| 75 | -0.01182       | -0.11379                    | 0.55665        | 55665          | 234948                      | 427289         | 7.68           |
| 80 | 0.34458        | 0.23812                     | 0.38314        | 38314          | 192341                      | 192341         | 5.02           |

Table 12: Brief life table of males (civil status) in Jordan for 2015

### A life table for Jordanians (civil status/females):

The infant mortality rate among females was 0.0158 according to the 2015 census survey results and is located in the model life tables (west) at level 23. Life expectancy at birth has been determined using the mathematical completion method to reach 74.0.

| X  | Y <sub>x</sub> | Y <sup>^</sup> <sub>x</sub> | l <sub>x</sub> | l <sub>x</sub> | <sub>n</sub> L <sub>x</sub> | T <sub>x</sub> | e <sub>x</sub> |
|----|----------------|-----------------------------|----------------|----------------|-----------------------------|----------------|----------------|
| 0  |                |                             |                | 100000         | 98894                       | 7385488        | 73.85          |
| 1  | -2.08691       | -2.06591                    | 0.98420        | 98420          | 393094                      | 7286594        | 74.04          |
| 5  | -2.01337       | -1.99287                    | 0.98176        | 98176          | 490557                      | 6893499        | 70.22          |
| 10 | -1.97827       | -1.95802                    | 0.98047        | 98047          | 489966                      | 6402942        | 65.30          |
| 15 | -1.95078       | -1.93072                    | 0.97940        | 97940          | 489252                      | 5912976        | 60.37          |
| 20 | -1.90803       | -1.88826                    | 0.97761        | 97761          | 488166                      | 5423724        | 55.48          |
| 25 | -1.85228       | -1.83289                    | 0.97505        | 97505          | 486721                      | 4935558        | 50.62          |
| 30 | -1.78943       | -1.77047                    | 0.97183        | 97183          | 484879                      | 4448837        | 45.78          |
| 35 | -1.71815       | -1.69969                    | 0.96768        | 96768          | 482397                      | 3963958        | 40.96          |
| 40 | -1.63224       | -1.61437                    | 0.96190        | 96190          | 478764                      | 3481561        | 36.19          |
| 45 | -1.52358       | -1.50646                    | 0.95315        | 95315          | 473017                      | 3002797        | 31.50          |
| 50 | -1.38237       | -1.36621                    | 0.93891        | 93891          | 463984                      | 2529781        | 26.94          |
| 55 | -1.21630       | -1.20129                    | 0.91702        | 91702          | 450105                      | 2065796        | 22.53          |
| 60 | -1.02620       | -1.01250                    | 0.88340        | 88340          | 428644                      | 1615691        | 18.29          |
| 65 | -0.80922       | -0.79701                    | 0.83118        | 83118          | 394433                      | 1187047        | 14.28          |
| 70 | -0.55059       | -0.54015                    | 0.74655        | 74655          | 340872                      | 792614.2       | 10.62          |
| 75 | -0.24662       | -0.23828                    | 0.61693        | 61693          | 264306                      | 451742.6       | 7.32           |
| 80 | 0.11413        | 0.11999                     | 0.44029        | 44029          | 187437                      | 187436.7       | 4.26           |

Table 13: Brief life table of females (civil status) in Jordan for 2015

# Appendix

**Appendix (1) : Death Probability Values** 

| level | e <sub>0</sub> | <b>q</b> <sub>1</sub> | <b>q</b> 5 |
|-------|----------------|-----------------------|------------|
| 1     | 18             | 0.41907               | 0.56995    |
| 2     | 20.4           | 0.38343               | 0.52888    |
| 3     | 22.9           | 0.35132               | 0.49043    |
| 4     | 25.3           | 0.32215               | 0.45429    |
| 5     | 27.7           | 0.29546               | 0.42024    |
| 6     | 30.1           | 0.27089               | 0.38806    |
| 7     | 32.5           | 0.24817               | 0.35758    |
| 8     | 34.9           | 0.22706               | 0.32865    |
| 9     | 37.3           | 0.20737               | 0.30112    |
| 10    | 39.7           | 0.18895               | 0.27489    |
| 11    | 42.1           | 0.17165               | 0.24985    |
| 12    | 44.5           | 0.15537               | 0.22592    |
| 13    | 47.1           | 0.13942               | 0.20039    |
| 14    | 49.6           | 0.12453               | 0.17713    |
| 15    | 51.8           | 0.11136               | 0.15673    |
| 16    | 54.1           | 0.09857               | 0.13707    |
| 17    | 56.5           | 0.08621               | 0.11816    |
| 18    | 58.8           | 0.0743                | 0.09999    |
| 19    | 61.2           | 0.06287               | 0.08256    |
| 20    | 63.6           | 0.05193               | 0.06585    |
| 21    | 66             | 0.04091               | 0.05011    |
| 22    | 68.6           | 0.03075               | 0.03666    |
| 23    | 71.2           | 0.02144               | 0.02479    |
| 24    | 73.9           | 0.01332               | 0.0149     |
| 25    | 76.6           | 0.00711               | 0.00769    |

The probability of death values q1 and q5 for males model west

| level | eO   | q1      | q5      |
|-------|------|---------|---------|
| 1     | 20   | 0.36517 | 0.53117 |
| 2     | 22.5 | 0.33362 | 0.49176 |
| 3     | 25   | 0.30519 | 0.45494 |
| 4     | 27.5 | 0.27936 | 0.42042 |
| 5     | 30   | 0.25573 | 0.38795 |
| 6     | 32.5 | 0.23398 | 0.3573  |
| 7     | 35   | 0.21386 | 0.32831 |
| 8     | 37.5 | 0.19518 | 0.30082 |
| 9     | 40   | 0.17774 | 0.2747  |
| 10    | 42.5 | 0.16143 | 0.24983 |
| 11    | 45   | 0.14612 | 0.22611 |
| 12    | 47.5 | 0.13171 | 0.20346 |
| 13    | 50   | 0.11831 | 0.18152 |
| 14    | 52.5 | 0.10548 | 0.15894 |
| 15    | 55   | 0.09339 | 0.13873 |
| 16    | 57.5 | 0.08177 | 0.11959 |
| 17    | 60   | 0.07066 | 0.10146 |
| 18    | 62.5 | 0.06004 | 0.08429 |
| 19    | 65   | 0.04994 | 0.06799 |
| 20    | 67.5 | 0.04034 | 0.05251 |
| 21    | 70   | 0.03093 | 0.0384  |
| 22    | 72.5 | 0.02262 | 0.02714 |
| 23    | 75   | 0.01516 | 0.01752 |
| 24    | 77.5 | 0.00894 | 0.00994 |
| 25    | 80   | 0.00445 | 0.00478 |

The probability of death values q1 and q5 for females /model west

|                                      | the completion estimation of the total male population mortality 2015 |                                  |            |                        |                    |                                         |               |            |  |  |  |  |
|--------------------------------------|-----------------------------------------------------------------------|----------------------------------|------------|------------------------|--------------------|-----------------------------------------|---------------|------------|--|--|--|--|
| Corrected<br>number of<br>deaths nMx | x                                                                     | Corrected<br>number of<br>deaths | N^(X)/N(X) | N(X)                   | N^(A)              | total male<br>population<br>mortality   | Total males   | Age groups |  |  |  |  |
| 0.017                                | 0                                                                     |                                  |            |                        | 63333              | 1339.5                                  | 557331        | 0-4        |  |  |  |  |
| 0.004                                | 1                                                                     | 704                              | 0.47688    | 115144.2               | 54910              | 289                                     | 594111        | 5-9        |  |  |  |  |
| 0.00118                              | 5                                                                     | 486                              | 0.43626    | 111006.9               | 48428              | 199.5                                   | 515958        | 10-14      |  |  |  |  |
| 0.00094                              | 10                                                                    | 692                              | 0.42665    | 100231.9               | 42764              | 284                                     | 486361        | 15-19      |  |  |  |  |
| 0.00142                              | 15                                                                    | 991                              | 0.38791    | 97086.5                | 37661              | 407                                     | 484504        | 20-24      |  |  |  |  |
| 0.00205                              | 20                                                                    | 820                              | 0.36658    | 90072.2                | 33019              | 336.5                                   | 416218        | 25-29      |  |  |  |  |
| 0.00197                              | 25                                                                    | 900                              | 0.37102    | 78076.6                | 28968              | 369.5                                   | 364548        | 30-34      |  |  |  |  |
| 0.00247                              | 30                                                                    | 997                              | 0.36521    | 69396.7                | 25345              | 409.5                                   | 329419        | 35-39      |  |  |  |  |
| 0.00303                              | 35                                                                    | 1459                             | 0.35769    | 61765.5                | 22093              | 599                                     | 288236        | 40-44      |  |  |  |  |
| 0.00506                              | 40                                                                    | 1849                             | 0.35569    | 53503.4                | 19031              | 759                                     | 246798        | 45-49      |  |  |  |  |
| 0.00749                              | 45                                                                    | 2492                             | 0.37764    | 42801.8                | 16164              | 1023                                    | 181220        | 50-54      |  |  |  |  |
| 0.01375                              | 50                                                                    | 2629                             | 0.43764    | 30555.8                | 13373              | 1079.5                                  | 124338        | 55-59      |  |  |  |  |
| 0.02115                              | 55                                                                    | 3188                             | 0.51902    | 20892.7                | 10844              | 1309                                    | 84589         | 60-64      |  |  |  |  |
| 0.03769                              | 60                                                                    | 3099                             | 0.55451    | 15121.1                | 8385               | 1272.5                                  | 66622         | 65-69      |  |  |  |  |
| 0.04652                              | 65                                                                    | 4270                             | 0.52497    | 11883                  | 6238               | 1753                                    | 52208         | 70-74      |  |  |  |  |
| 0.08178                              | 70                                                                    | 3149                             | 0.46049    | 8429.9                 | 3882               | 1293                                    | 32091         | 74-79      |  |  |  |  |
| 0.09814                              | 75                                                                    | 4736                             | 0.39449    | 5640.8                 | 2225               | 1944.5                                  | 24317         | 80+        |  |  |  |  |
| 0.19476                              | 80                                                                    |                                  | 0.411      | median value           |                    |                                         |               |            |  |  |  |  |
|                                      |                                                                       | the co                           | 2.436      | Correction factor      | nulation mortality | y 2015                                  |               |            |  |  |  |  |
|                                      | 1                                                                     |                                  |            | or the total remain po | pulation mortant   | 2013                                    |               |            |  |  |  |  |
| Corrected<br>number of<br>deaths nMx | x                                                                     | Corrected<br>number of<br>deaths | N^(X)/N(X) | N(X)                   | N^(A)              | total female<br>population<br>mortality | Total females | Age groups |  |  |  |  |
| <u>0.017</u>                         | 0                                                                     |                                  |            |                        | 36690              | 1048                                    | 529515        | 0-4        |  |  |  |  |
| <u>0.004</u>                         | 1                                                                     | 712                              | 0.28750    | 109755.2               | 31554              | 187.5                                   | 568037        | 5-9        |  |  |  |  |
| 0.00125                              | 5                                                                     | 496                              | 0.26352    | 105532.4               | 27809              | 130.5                                   | 487287        | 10-14      |  |  |  |  |
| 0.00102                              | 10                                                                    | 475                              | 0.26318    | 93250.4                | 24542              | 125                                     | 445217        | 15-19      |  |  |  |  |
| 0.00107                              | 15                                                                    | 534                              | 0.25016    | 86539.3                | 21649              | 140.5                                   | 420176        | 20-24      |  |  |  |  |
| 0.00127                              | 20                                                                    | 522                              | 0.24248    | 78640.6                | 19069              | 137.5                                   | 366230        | 25-29      |  |  |  |  |
| 0.00143                              | 25                                                                    | 634                              | 0.23936    | 70116.2                | 16783              | 167                                     | 334932        | 30-34      |  |  |  |  |
| 0.00189                              | 30                                                                    | 685                              | 0.23361    | 63044.4                | 14728              | 180.5                                   | 295512        | 35-39      |  |  |  |  |
| 0.00232                              | 35                                                                    | 1037                             | 0.23437    | 55009.5                | 12892              | 273                                     | 254583        | 40-44      |  |  |  |  |
| 0.00407                              | 40                                                                    | 1227                             | 0.23908    | 46751                  | 11177              | 323                                     | 212927        | 45-49      |  |  |  |  |
| 0.00576                              | 45                                                                    | 1802                             | 0.25677    | 37424.2                | 9609               | 474.5                                   | 161315        | 50-54      |  |  |  |  |
| 0.01117                              | 50                                                                    | 1800                             | 0.29093    | 27758.5                | 8076               | 474                                     | 116270        | 55-59      |  |  |  |  |
| 0.01548                              | 55                                                                    | 2632                             | 0.34217    | 19628.4                | 6716               | 693                                     | 80014         | 60-64      |  |  |  |  |
| 0.03289                              | 60                                                                    | 2622                             | 0.35932    | 14761.3                | 5304               | 690.5                                   | 67599         | 65-69      |  |  |  |  |
| 0.03879                              | 65                                                                    | 3619                             | 0.35459    | 11433.1                | 4054               | 953                                     | 46732         | 70-74      |  |  |  |  |
| 0.07744                              | 70                                                                    | 2829                             | 0.34474    | 7826.5                 | 2698               | 745                                     | 31533         | 74-79      |  |  |  |  |
| 0.000=1                              |                                                                       |                                  |            | 5500.0                 |                    | 1472.5                                  | 26205         | 90.        |  |  |  |  |
| 0.08971                              | 75                                                                    | 5591                             | 0.29243    | 5783.8                 | 1691               | 1472.3                                  | 20303         | 00+        |  |  |  |  |
| 0.08971                              | 75<br>80                                                              | 5591                             | 0.29243    | 5783.8<br>median value | 1691               | 1472.5                                  | 20303         | 00+        |  |  |  |  |

# Appendix (2): Tables to estimate the completion of mortality

| Estimation of the completion of mortality for Jordanians males 2015                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Corrected<br>number of<br>deaths nMx                                                                                                                                                                                                                                                                                                                                                                                                                   | x                                                                                                                | Corrected<br>number of<br>deaths                                                                                                                                                                                                                                        | N^(X)/N(X)                                                                                                                                                                            | N(X)                                                                                                                                                                              | N^(A)                                                                                                                                                  | Total<br>Jordanian<br>deaths males                                                                                                                                                                                                                                                                | Total males                                                                                                                                                                                                                                                                                                               | Age groups                                                                                                                                                                                                                                                                           |  |  |
| <u>0.017</u>                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                              |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                       |                                                                                                                                                                                   | 54608                                                                                                                                                  | 1082.5                                                                                                                                                                                                                                                                                            | 382731                                                                                                                                                                                                                                                                                                                    | 0-4                                                                                                                                                                                                                                                                                  |  |  |
| <u>0.004</u>                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                                                                              | 475                                                                                                                                                                                                                                                                     | 0.59524                                                                                                                                                                               | 79654                                                                                                                                                                             | 47413                                                                                                                                                  | 237.5                                                                                                                                                                                                                                                                                             | 413809                                                                                                                                                                                                                                                                                                                    | 5-9                                                                                                                                                                                                                                                                                  |  |  |
| 0.00115                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0                                                                                                              | 324                                                                                                                                                                                                                                                                     | 0.53455                                                                                                                                                                               | 78250.1                                                                                                                                                                           | 41828                                                                                                                                                  | 162                                                                                                                                                                                                                                                                                               | 368692                                                                                                                                                                                                                                                                                                                    | 10-14                                                                                                                                                                                                                                                                                |  |  |
| 0.00088                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0                                                                                                             | 475                                                                                                                                                                                                                                                                     | 0.51358                                                                                                                                                                               | 71937.5                                                                                                                                                                           | 36946                                                                                                                                                  | 237.5                                                                                                                                                                                                                                                                                             | 350683                                                                                                                                                                                                                                                                                                                    | 15-19                                                                                                                                                                                                                                                                                |  |  |
| 0.00135                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.0                                                                                                             | 668                                                                                                                                                                                                                                                                     | 0.47493                                                                                                                                                                               | 68523.7                                                                                                                                                                           | 32544                                                                                                                                                  | 334                                                                                                                                                                                                                                                                                               | 334554                                                                                                                                                                                                                                                                                                                    | 20-24                                                                                                                                                                                                                                                                                |  |  |
| 0.00200                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.0                                                                                                             | 527                                                                                                                                                                                                                                                                     | 0.47416                                                                                                                                                                               | 60211.3                                                                                                                                                                           | 28550                                                                                                                                                  | 263.5                                                                                                                                                                                                                                                                                             | 267559                                                                                                                                                                                                                                                                                                                    | 25-29                                                                                                                                                                                                                                                                                |  |  |
| 0.00197                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.0                                                                                                             | 572                                                                                                                                                                                                                                                                     | 0.50352                                                                                                                                                                               | 49795.6                                                                                                                                                                           | 25073                                                                                                                                                  | 286                                                                                                                                                                                                                                                                                               | 230397                                                                                                                                                                                                                                                                                                                    | 30-34                                                                                                                                                                                                                                                                                |  |  |
| 0.00248                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.0                                                                                                             | 706                                                                                                                                                                                                                                                                     | 0.49672                                                                                                                                                                               | 44226.8                                                                                                                                                                           | 21969                                                                                                                                                  | 353                                                                                                                                                                                                                                                                                               | 211871                                                                                                                                                                                                                                                                                                                    | 35-39                                                                                                                                                                                                                                                                                |  |  |
| 0.00333                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35.0                                                                                                             | 1007                                                                                                                                                                                                                                                                    | 0.47354                                                                                                                                                                               | 40443.8                                                                                                                                                                           | 19152                                                                                                                                                  | 503.5                                                                                                                                                                                                                                                                                             | 192567                                                                                                                                                                                                                                                                                                                    | 40-44                                                                                                                                                                                                                                                                                |  |  |
| 0.00523                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.0                                                                                                             | 1338                                                                                                                                                                                                                                                                    | 0.45432                                                                                                                                                                               | 36344.5                                                                                                                                                                           | 16512                                                                                                                                                  | 669                                                                                                                                                                                                                                                                                               | 170878                                                                                                                                                                                                                                                                                                                    | 45-49                                                                                                                                                                                                                                                                                |  |  |
| 0.00783                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45.0                                                                                                             | 1751                                                                                                                                                                                                                                                                    | 0.46560                                                                                                                                                                               | 30100.8                                                                                                                                                                           | 14015                                                                                                                                                  | 875.5                                                                                                                                                                                                                                                                                             | 130130                                                                                                                                                                                                                                                                                                                    | 50-54                                                                                                                                                                                                                                                                                |  |  |
| 0.01345                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.0                                                                                                             | 1871                                                                                                                                                                                                                                                                    | 0.52500                                                                                                                                                                               | 22105.5                                                                                                                                                                           | 11605                                                                                                                                                  | 935.5                                                                                                                                                                                                                                                                                             | 90925                                                                                                                                                                                                                                                                                                                     | 55-59                                                                                                                                                                                                                                                                                |  |  |
| 0.02057                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55.0                                                                                                             | 2314                                                                                                                                                                                                                                                                    | 0.60619                                                                                                                                                                               | 15526.8                                                                                                                                                                           | 9412                                                                                                                                                   | 1157.5                                                                                                                                                                                                                                                                                            | 64343                                                                                                                                                                                                                                                                                                                     | 60-64                                                                                                                                                                                                                                                                                |  |  |
| 0.03597                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60.0                                                                                                             | 2201                                                                                                                                                                                                                                                                    | 0.62925                                                                                                                                                                               | 11534                                                                                                                                                                             | 7258                                                                                                                                                   | 1100.5                                                                                                                                                                                                                                                                                            | 50997                                                                                                                                                                                                                                                                                                                     | 65-69                                                                                                                                                                                                                                                                                |  |  |
| 0.04315                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65.0                                                                                                             | 3023                                                                                                                                                                                                                                                                    | 0.58204                                                                                                                                                                               | 9278.7                                                                                                                                                                            | 5401                                                                                                                                                   | 1512                                                                                                                                                                                                                                                                                              | 41790                                                                                                                                                                                                                                                                                                                     | 70-74                                                                                                                                                                                                                                                                                |  |  |
| 0.07234                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70.0                                                                                                             | 2268                                                                                                                                                                                                                                                                    | 0.49392                                                                                                                                                                               | 6814.8                                                                                                                                                                            | 3366                                                                                                                                                   | 1134.5                                                                                                                                                                                                                                                                                            | 26358                                                                                                                                                                                                                                                                                                                     | 74-79                                                                                                                                                                                                                                                                                |  |  |
| 0.08606                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75.0                                                                                                             | 3346                                                                                                                                                                                                                                                                    | 0.41275                                                                                                                                                                               | 4644.2                                                                                                                                                                            | 1917                                                                                                                                                   | 1673.5                                                                                                                                                                                                                                                                                            | 20084                                                                                                                                                                                                                                                                                                                     | 80+                                                                                                                                                                                                                                                                                  |  |  |
| 0.16661                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80.0                                                                                                             |                                                                                                                                                                                                                                                                         | 0.50                                                                                                                                                                                  | Median value                                                                                                                                                                      |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                                                                                                                                                                                                         | 2.00                                                                                                                                                                                  | Correction                                                                                                                                                                        |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  | Estin                                                                                                                                                                                                                                                                   | nation of the completi                                                                                                                                                                | on of mortality for                                                                                                                                                               | Jordanians females                                                                                                                                     | 2015                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |  |  |
| Commente d                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  | Germanderal                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                        | T-4-1                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |  |  |
| Corrected<br>number of<br>deaths nMx                                                                                                                                                                                                                                                                                                                                                                                                                   | x                                                                                                                | Corrected<br>number of<br>deaths                                                                                                                                                                                                                                        | N^(X)/N(X)                                                                                                                                                                            | N(X)                                                                                                                                                                              | N^(A)                                                                                                                                                  | Total<br>Jordanian<br>deaths females                                                                                                                                                                                                                                                              | Total females                                                                                                                                                                                                                                                                                                             | Age groups                                                                                                                                                                                                                                                                           |  |  |
| Corrected<br>number of<br>deaths nMx<br><u>0.017</u>                                                                                                                                                                                                                                                                                                                                                                                                   | <b>x</b><br>0                                                                                                    | Corrected<br>number of<br>deaths                                                                                                                                                                                                                                        | N^(X)/N(X)                                                                                                                                                                            | N(X)                                                                                                                                                                              | N^(A)<br>31140                                                                                                                                         | Total<br>Jordanian<br>deaths females<br>845                                                                                                                                                                                                                                                       | Total females<br>364526                                                                                                                                                                                                                                                                                                   | Age groups<br>0-4                                                                                                                                                                                                                                                                    |  |  |
| Corrected<br>number of<br>deaths nMx<br><u>0.017</u><br><u>0.004</u>                                                                                                                                                                                                                                                                                                                                                                                   | x<br>0<br>1                                                                                                      | Corrected<br>number of<br>deaths<br>464                                                                                                                                                                                                                                 | N^(X)/N(X)                                                                                                                                                                            | N(X)<br>75987.2                                                                                                                                                                   | N^(A)<br>31140<br>26823                                                                                                                                | Total<br>Jordanian<br>deaths females<br>845<br>143.5                                                                                                                                                                                                                                              | <b>Total females</b><br>364526<br>395346                                                                                                                                                                                                                                                                                  | Age groups<br>0-4<br>5-9                                                                                                                                                                                                                                                             |  |  |
| Corrected<br>number of<br>deaths nMx<br>0.017<br>0.004<br>0.00117                                                                                                                                                                                                                                                                                                                                                                                      | x<br>0<br>1<br>5                                                                                                 | Corrected<br>number of<br>deaths<br>464<br>342                                                                                                                                                                                                                          | N^(X)/N(X)<br>0.353<br>0.318                                                                                                                                                          | N(X)<br>75987.2<br>74295.1                                                                                                                                                        | N^(A)<br>31140<br>26823<br>23655                                                                                                                       | Total<br>Jordanian<br>deaths females<br>845<br>143.5<br>106                                                                                                                                                                                                                                       | Total females           364526           395346           347605                                                                                                                                                                                                                                                          | Age groups<br>0-4<br>5-9<br>10-14                                                                                                                                                                                                                                                    |  |  |
| Corrected<br>number of<br>deaths nMx<br>0.017<br>0.004<br>0.00117<br>0.00099                                                                                                                                                                                                                                                                                                                                                                           | x<br>0<br>1<br>5<br>10                                                                                           | Corrected<br>number of<br>deaths<br>464<br>342<br>349                                                                                                                                                                                                                   | N^(X)/N(X)<br>0.353<br>0.318<br>0.309                                                                                                                                                 | N(X)<br>75987.2<br>74295.1<br>67565.0                                                                                                                                             | N^(A)<br>31140<br>26823<br>23655<br>20880                                                                                                              | Total<br>Jordanian<br>deaths females<br>845<br>143.5<br>106<br>108                                                                                                                                                                                                                                | Total females           364526           395346           347605           328045                                                                                                                                                                                                                                         | Age groups<br>0-4<br>5-9<br>10-14<br>15-19                                                                                                                                                                                                                                           |  |  |
| Corrected<br>number of<br>deaths nMx<br>0.0017<br>0.004<br>0.00117<br>0.00099<br>0.00106                                                                                                                                                                                                                                                                                                                                                               | x<br>0<br>1<br>5<br>10<br>15                                                                                     | Corrected<br>number of<br>deaths<br>464<br>342<br>349<br>391                                                                                                                                                                                                            | N^(X)/N(X)<br>0.353<br>0.318<br>0.309<br>0.290                                                                                                                                        | N(X)<br>75987.2<br>74295.1<br>67565.0<br>63500.2                                                                                                                                  | N^(A)<br>31140<br>26823<br>23655<br>20880<br>18417                                                                                                     | Total<br>Jordanian<br>deaths females845143.5106108121                                                                                                                                                                                                                                             | Total females           364526           395346           347605           328045           306957                                                                                                                                                                                                                        | Age groups<br>0-4<br>5-9<br>10-14<br>15-19<br>20-24                                                                                                                                                                                                                                  |  |  |
| Corrected<br>number of<br>deaths nMx<br>0.0017<br>0.00117<br>0.00099<br>0.00106<br>0.00127                                                                                                                                                                                                                                                                                                                                                             | x<br>0<br>1<br>5<br>10<br>15<br>20                                                                               | Corrected<br>number of<br>deaths<br>464<br>342<br>349<br>391<br>367                                                                                                                                                                                                     | N^(X)/N(X)<br>0.353<br>0.318<br>0.309<br>0.290<br>0.290                                                                                                                               | N(X)<br>75987.2<br>74295.1<br>67565.0<br>63500.2<br>55979.3                                                                                                                       | N^(A)<br>31140<br>26823<br>23655<br>20880<br>18417<br>16221                                                                                            | Total<br>Jordanian<br>deaths females           845           143.5           106           108           121           113.5                                                                                                                                                                      | Total females           364526           395346           347605           328045           306957           252836                                                                                                                                                                                                       | Age groups<br>0-4<br>5-9<br>10-14<br>15-19<br>20-24<br>25-29                                                                                                                                                                                                                         |  |  |
| Corrected<br>number of<br>deaths nMx<br>0.017<br>0.004<br>0.00117<br>0.00099<br>0.00106<br>0.00127<br>0.00145                                                                                                                                                                                                                                                                                                                                          | x<br>0<br>1<br>5<br>10<br>15<br>20<br>25                                                                         | Corrected<br>number of<br>deaths<br>464<br>342<br>349<br>391<br>367<br>472                                                                                                                                                                                              | N^(X)/N(X)<br>0.353<br>0.318<br>0.309<br>0.290<br>0.290<br>0.293                                                                                                                      | N(X)<br>75987.2<br>74295.1<br>67565.0<br>63500.2<br>55979.3<br>48710.8                                                                                                            | N^(A)<br>31140<br>26823<br>23655<br>20880<br>18417<br>16221<br>14279                                                                                   | Total<br>Jordanian<br>deaths females           845           143.5           106           108           121           113.5           146                                                                                                                                                        | Total females           364526           395346           347605           328045           306957           252836           234272                                                                                                                                                                                      | Age groups<br>0-4<br>5-9<br>10-14<br>15-19<br>20-24<br>25-29<br>30-34                                                                                                                                                                                                                |  |  |
| Corrected<br>number of<br>deaths nMx<br>0.0017<br>0.0004<br>0.00117<br>0.00099<br>0.00106<br>0.00127<br>0.00145<br>0.00201                                                                                                                                                                                                                                                                                                                             | x<br>0<br>1<br>5<br>10<br>15<br>20<br>25<br>30                                                                   | Corrected<br>number of<br>deaths<br>464<br>342<br>349<br>391<br>367<br>472<br>441                                                                                                                                                                                       | N^(X)/N(X)<br>0.353<br>0.318<br>0.309<br>0.290<br>0.290<br>0.293<br>0.279                                                                                                             | N(X)<br>75987.2<br>74295.1<br>67565.0<br>63500.2<br>55979.3<br>48710.8<br>44960.1                                                                                                 | N^(A)<br>31140<br>26823<br>23655<br>20880<br>18417<br>16221<br>14279<br>12527                                                                          | Total<br>Jordanian<br>deaths females           845           143.5           106           108           121           113.5           146           136.5                                                                                                                                        | Total females           364526           395346           347605           328045           306957           252836           234272           215329                                                                                                                                                                     | Age groups<br>0-4<br>5-9<br>10-14<br>15-19<br>20-24<br>25-29<br>30-34<br>35-39                                                                                                                                                                                                       |  |  |
| Corrected<br>number of<br>deaths nMx           0.017           0.004           0.00117           0.00099           0.00106           0.00127           0.00145           0.00201           0.00205                                                                                                                                                                                                                                                     | x<br>0<br>1<br>5<br>10<br>15<br>20<br>25<br>30<br>35                                                             | Corrected<br>number of<br>deaths<br>464<br>342<br>349<br>391<br>367<br>472<br>441<br>441<br>750                                                                                                                                                                         | N^(X)/N(X)<br>0.353<br>0.318<br>0.309<br>0.290<br>0.290<br>0.293<br>0.279<br>0.267                                                                                                    | N(X)<br>75987.2<br>74295.1<br>67565.0<br>63500.2<br>55979.3<br>48710.8<br>44960.1<br>41088.4                                                                                      | N^(A)<br>31140<br>26823<br>23655<br>20880<br>18417<br>16221<br>14279<br>12527<br>10982                                                                 | Total<br>Jordanian<br>deaths females           845           143.5           106           108           121           113.5           146           136.5           232                                                                                                                          | Total females           364526           395346           347605           328045           306957           252836           234272           215329           195555                                                                                                                                                    | Age groups<br>0-4<br>5-9<br>10-14<br>15-19<br>20-24<br>25-29<br>30-34<br>35-39<br>40-44                                                                                                                                                                                              |  |  |
| Corrected<br>number of<br>deaths nMx<br>0.017<br>0.004<br>0.00117<br>0.00099<br>0.00106<br>0.00127<br>0.00145<br>0.00201<br>0.00205<br>0.00383                                                                                                                                                                                                                                                                                                         | x<br>0<br>1<br>5<br>10<br>15<br>20<br>25<br>30<br>25<br>30<br>35<br>40                                           | Corrected<br>number of<br>deaths<br>464<br>342<br>349<br>391<br>367<br>472<br>441<br>750<br>869                                                                                                                                                                         | N^(X)/N(X)<br>0.353<br>0.318<br>0.309<br>0.290<br>0.290<br>0.293<br>0.279<br>0.267<br>0.261                                                                                           | N(X)<br>75987.2<br>74295.1<br>67565.0<br>63500.2<br>55979.3<br>48710.8<br>44960.1<br>41088.4<br>36496.3                                                                           | N^(A)<br>31140<br>26823<br>23655<br>20880<br>18417<br>16221<br>14279<br>12527<br>10982<br>9522                                                         | Total<br>Jordanian<br>deaths females           845           143.5           106           108           121           113.5           146           136.5           232           269                                                                                                            | Total females           364526           395346           347605           328045           306957           252836           234272           215329           195555           169408                                                                                                                                   | Age groups           0-4           5-9           10-14           15-19           20-24           25-29           30-34           35-39           40-44           45-49                                                                                                               |  |  |
| Corrected<br>number of<br>deaths nMx           0.017           0.004           0.00117           0.00099           0.00106           0.00127           0.00145           0.00201           0.00205           0.00383           0.00513                                                                                                                                                                                                                 | x<br>0<br>1<br>5<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45                                                 | Corrected<br>number of<br>deaths<br>464<br>342<br>349<br>391<br>367<br>472<br>441<br>750<br>869<br>1262                                                                                                                                                                 | N^(X)/N(X)<br>0.353<br>0.318<br>0.309<br>0.290<br>0.290<br>0.293<br>0.279<br>0.267<br>0.261<br>0.274                                                                                  | N(X)<br>75987.2<br>74295.1<br>67565.0<br>63500.2<br>55979.3<br>48710.8<br>44960.1<br>41088.4<br>36496.3<br>29872.6                                                                | N^(A)<br>31140<br>26823<br>23655<br>20880<br>18417<br>16221<br>14279<br>12527<br>10982<br>9522<br>8192                                                 | Total<br>Jordanian<br>deaths females           845           143.5           106           108           121           113.5           146           136.5           232           269           390.5                                                                                            | Total females           364526           395346           347605           328045           306957           252836           234272           215329           195555           169408           129318                                                                                                                  | Age groups           0-4           5-9           10-14           15-19           20-24           25-29           30-34           35-39           40-44           45-49           50-54                                                                                               |  |  |
| Corrected<br>number of<br>deaths nMx           0.017           0.004           0.00117           0.00099           0.00106           0.00127           0.00145           0.00201           0.00205           0.00383           0.00513           0.00976                                                                                                                                                                                               | x<br>0<br>1<br>5<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50                                           | Corrected<br>number of<br>deaths<br>464<br>342<br>349<br>391<br>367<br>472<br>441<br>750<br>869<br>1262<br>1279                                                                                                                                                         | N^(X)/N(X)<br>0.353<br>0.318<br>0.309<br>0.290<br>0.290<br>0.293<br>0.279<br>0.267<br>0.261<br>0.274<br>0.312                                                                         | N(X)<br>75987.2<br>74295.1<br>67565.0<br>63500.2<br>55979.3<br>48710.8<br>44960.1<br>41088.4<br>36496.3<br>29872.6<br>22115.9                                                     | N^(A)<br>31140<br>26823<br>23655<br>20880<br>18417<br>16221<br>14279<br>12527<br>10982<br>9522<br>8192<br>6898                                         | Total<br>Jordanian<br>deaths females           845           143.5           106           108           121           113.5           146           136.5           232           269           390.5           396                                                                              | Total females           364526           395346           347605           328045           306957           252836           234272           215329           195555           169408           129318           91841                                                                                                  | Age groups           0-4           5-9           10-14           15-19           20-24           25-29           30-34           35-39           40-44           45-49           50-54           55-59                                                                               |  |  |
| Corrected<br>number of<br>deaths nMx<br>0.017<br>0.004<br>0.00117<br>0.00099<br>0.00106<br>0.00127<br>0.00145<br>0.00201<br>0.00205<br>0.00205<br>0.00383<br>0.00513<br>0.00976<br>0.01393                                                                                                                                                                                                                                                             | x<br>0<br>1<br>5<br>10<br>15<br>20<br>25<br>30<br>25<br>30<br>35<br>40<br>45<br>50<br>55                         | Corrected<br>number of<br>deaths<br>464<br>342<br>349<br>391<br>367<br>472<br>441<br>750<br>869<br>1262<br>1279<br>1919                                                                                                                                                 | N^(X)/N(X)<br>0.353<br>0.318<br>0.309<br>0.290<br>0.290<br>0.293<br>0.279<br>0.267<br>0.261<br>0.261<br>0.274<br>0.312<br>0.370                                                       | N(X)<br>75987.2<br>74295.1<br>67565.0<br>63500.2<br>55979.3<br>48710.8<br>44960.1<br>41088.4<br>36496.3<br>29872.6<br>22115.9<br>15507.6                                          | N^(A)<br>31140<br>26823<br>23655<br>20880<br>18417<br>16221<br>14279<br>12527<br>10982<br>9522<br>8192<br>6898<br>5745                                 | Total<br>Jordanian<br>deaths females           845           143.5           106           108           121           113.5           146           136.5           232           269           390.5           396           594                                                                | Total females           364526           395346           347605           328045           306957           252836           234272           215329           195555           169408           129318           91841           63235                                                                                  | Age groups           0-4           5-9           10-14           15-19           20-24           25-29           30-34           35-39           40-44           45-49           50-54           55-59           60-64                                                               |  |  |
| Corrected<br>number of<br>deaths nMx           0.017           0.004           0.00117           0.00099           0.00106           0.00127           0.00145           0.00201           0.00205           0.00383           0.00513           0.00976           0.01393           0.03035                                                                                                                                                           | x<br>0<br>1<br>5<br>10<br>15<br>20<br>25<br>30<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60                   | Corrected<br>number of<br>deaths<br>464<br>342<br>349<br>391<br>367<br>472<br>441<br>750<br>869<br>1262<br>1279<br>1919<br>1895                                                                                                                                         | N^(X)/N(X)<br>0.353<br>0.318<br>0.309<br>0.290<br>0.290<br>0.293<br>0.279<br>0.267<br>0.261<br>0.261<br>0.274<br>0.312<br>0.370<br>0.389                                              | N(X)<br>75987.2<br>74295.1<br>67565.0<br>63500.2<br>55979.3<br>48710.8<br>44960.1<br>41088.4<br>36496.3<br>29872.6<br>22115.9<br>15507.6<br>11660.5                               | N^(A)<br>31140<br>26823<br>23655<br>20880<br>18417<br>16221<br>14279<br>12527<br>10982<br>9522<br>8192<br>6898<br>5745<br>4536                         | Total<br>Jordanian<br>deaths females           845           143.5           106           108           121           13.5           146           136.5           232           269           390.5           396           594           586.5                                                 | Total females           364526           395346           347605           328045           306957           252836           234272           215329           195555           169408           129318           91841           63235           53370                                                                  | Age groups           0-4           5-9           10-14           15-19           20-24           25-29           30-34           35-39           40-44           45-49           50-54           55-59           60-64           65-69                                               |  |  |
| Corrected<br>number of<br>deaths nMx           0.017           0.004           0.00117           0.00099           0.00106           0.00127           0.00145           0.00201           0.00205           0.00383           0.00513           0.00976           0.01393           0.03035           0.03550                                                                                                                                         | x<br>0<br>1<br>5<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>65                         | Corrected<br>number of<br>deaths<br>464<br>342<br>349<br>391<br>367<br>472<br>441<br>750<br>869<br>1262<br>1279<br>1919<br>1895<br>2667                                                                                                                                 | N^(X)/N(X)<br>0.353<br>0.318<br>0.309<br>0.290<br>0.290<br>0.293<br>0.279<br>0.267<br>0.267<br>0.261<br>0.274<br>0.312<br>0.370<br>0.389<br>0.381                                     | N(X)<br>75987.2<br>74295.1<br>67565.0<br>63500.2<br>55979.3<br>48710.8<br>44960.1<br>41088.4<br>36496.3<br>29872.6<br>22115.9<br>15507.6<br>11660.5<br>9108.0                     | N^(A)<br>31140<br>26823<br>23655<br>20880<br>18417<br>16221<br>14279<br>12527<br>10982<br>9522<br>8192<br>6898<br>5745<br>4536<br>3470                 | Total<br>Jordanian<br>deaths females           845           143.5           106           108           121           113.5           146           136.5           232           269           390.5           396           594           586.5           825.5                                | Total females           364526           395346           347605           328045           306957           252836           234272           215329           169408           129318           91841           63235           53370           37710                                                                   | Age groups           0-4           5-9           10-14           15-19           20-24           25-29           30-34           35-39           40-44           45-49           50-54           55-59           60-64           65-69           70-74                               |  |  |
| Corrected<br>number of<br>deaths nMx           0.017           0.004           0.00117           0.00099           0.00106           0.00127           0.00145           0.00201           0.00205           0.00383           0.00513           0.00976           0.01393           0.03035           0.03550           0.07072                                                                                                                       | x<br>0<br>1<br>5<br>10<br>15<br>20<br>25<br>30<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>65<br>70       | Corrected<br>number of<br>deaths<br>464<br>342<br>349<br>391<br>367<br>472<br>441<br>750<br>869<br>1262<br>1279<br>1919<br>1895<br>2667<br>2071                                                                                                                         | N^(X)/N(X)<br>0.353<br>0.318<br>0.309<br>0.290<br>0.290<br>0.293<br>0.279<br>0.267<br>0.261<br>0.261<br>0.274<br>0.312<br>0.370<br>0.389<br>0.381<br>0.364                            | N(X)<br>75987.2<br>74295.1<br>67565.0<br>63500.2<br>55979.3<br>48710.8<br>44960.1<br>41088.4<br>36496.3<br>29872.6<br>22115.9<br>15507.6<br>11660.5<br>9108.0<br>6315.3           | N^(A)<br>31140<br>26823<br>23655<br>20880<br>18417<br>16221<br>14279<br>12527<br>10982<br>9522<br>8192<br>6898<br>5745<br>4536<br>3470<br>2301         | Total<br>Jordanian<br>deaths females           845           143.5           106           108           121           13.5           146           136.5           232           269           390.5           396           594           586.5           825.5           641                   | Total females           364526           395346           347605           328045           306957           252836           234272           215329           195555           169408           129318           91841           63235           53370           37710           25443                                  | Age groups         0-4         5-9         10-14         15-19         20-24         25-29         30-34         35-39         40-44         45-49         50-54         55-59         60-64         65-69         70-74         74-79                                               |  |  |
| Corrected<br>number of<br>deaths nMx<br>0.017<br>0.004<br>0.00117<br>0.00099<br>0.00106<br>0.00127<br>0.00145<br>0.00201<br>0.00205<br>0.00205<br>0.00383<br>0.000513<br>0.00976<br>0.01393<br>0.03035<br>0.03550<br>0.07072<br>0.08139                                                                                                                                                                                                                | x<br>0<br>1<br>5<br>10<br>15<br>20<br>25<br>30<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>65<br>70<br>75 | Corrected<br>number of<br>deaths           464           342           349           371           367           472           441           750           869           1262           1279           1919           1895           2667           2071           4040 | N^(X)/N(X)<br>0.353<br>0.318<br>0.309<br>0.290<br>0.290<br>0.293<br>0.279<br>0.267<br>0.261<br>0.261<br>0.274<br>0.312<br>0.370<br>0.389<br>0.381<br>0.364<br>0.310                   | N(X)<br>75987.2<br>74295.1<br>67565.0<br>63500.2<br>55979.3<br>48710.8<br>44960.1<br>41088.4<br>36496.3<br>29872.6<br>22115.9<br>15507.6<br>11660.5<br>9108.0<br>6315.3<br>4634.0 | N^(A)<br>31140<br>26823<br>23655<br>20880<br>18417<br>16221<br>14279<br>12527<br>10982<br>9522<br>8192<br>6898<br>5745<br>4536<br>3470<br>2301<br>1437 | Total<br>Jordanian<br>deaths females           845           143.5           106           108           121           13.5           146           136.5           232           269           390.5           396           594           586.5           825.5           641           1250.5  | Total females           364526           395346           347605           347605           328045           306957           252836           234272           215329           195555           169408           129318           91841           63235           53370           37710           25443           20897 | Age groups         0.4         5.9         10-14         15-19         20-24         25-29         30-34         35-39         40-44         45-49         50-54         55-59         60-64         65-69         70-74         74-79         80+                                   |  |  |
| Corrected<br>number of<br>deaths nMx           0.017           0.004           0.0017           0.0017           0.0017           0.0017           0.0017           0.0017           0.0017           0.0017           0.00127           0.00145           0.00201           0.00205           0.00383           0.00513           0.00976           0.01393           0.03035           0.03550           0.07072           0.08139           0.19332 | x<br>0<br>1<br>5<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>65<br>70<br>75<br>80       | Corrected<br>number of<br>deaths<br>464<br>342<br>349<br>391<br>367<br>472<br>441<br>750<br>869<br>1262<br>1279<br>1919<br>1895<br>2667<br>2071<br>4040                                                                                                                 | N^(X)/N(X)<br>0.353<br>0.318<br>0.309<br>0.290<br>0.290<br>0.293<br>0.279<br>0.267<br>0.267<br>0.261<br>0.261<br>0.274<br>0.312<br>0.370<br>0.389<br>0.381<br>0.364<br>0.310<br>0.310 | N(X)<br>75987.2<br>74295.1<br>67565.0<br>63500.2<br>55979.3<br>48710.8<br>44960.1<br>41088.4<br>36496.3<br>29872.6<br>22115.9<br>15507.6<br>11660.5<br>9108.0<br>6315.3<br>4634.0 | N^(A)<br>31140<br>26823<br>23655<br>20880<br>18417<br>16221<br>14279<br>12527<br>10982<br>9522<br>8192<br>6898<br>5745<br>4536<br>3470<br>2301<br>1437 | Total<br>Jordanian<br>deaths females           845           143.5           106           108           121           113.5           146           136.5           232           269           390.5           396           594           586.5           825.5           641           1250.5 | Total females           364526           395346           347605           328045           306957           252836           234272           215329           195555           169408           129318           91841           63235           53370           37710           25443           20897                  | Age groups           0-4           5-9           10-14           15-19           20-24           25-29           30-34           35-39           40-44           45-49           50-54           55-59           60-64           65-69           70-74           74-79           80+ |  |  |

|                                                                                                                       | Estimation of mortality completion of civil status and passport /males 2015            |                                                                                        |                                                                                                              |                                                                                                                                                                                                    |                                                                                                               |                                                                                                                                                        |                                                                                                                          |                                                                                                                 |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Corrected<br>number of<br>deaths nMx                                                                                  | X                                                                                      | Corrected<br>number of<br>deaths                                                       | N^(X)/N(X)                                                                                                   | N(X)                                                                                                                                                                                               | N^(A)                                                                                                         | Total Civil<br>status<br>deaths/males                                                                                                                  | Total males                                                                                                              | Age group                                                                                                       |  |  |  |  |
| <u>0.017</u>                                                                                                          | 0                                                                                      |                                                                                        |                                                                                                              |                                                                                                                                                                                                    | 66270                                                                                                         | 875                                                                                                                                                    | 382731                                                                                                                   | 0-4                                                                                                             |  |  |  |  |
| <u>0.004</u>                                                                                                          | 1                                                                                      | 259                                                                                    | 0.728                                                                                                        | 79654.0                                                                                                                                                                                            | 57952                                                                                                         | 162                                                                                                                                                    | 413809                                                                                                                   | 5-9                                                                                                             |  |  |  |  |
| 0.000625                                                                                                              | 5                                                                                      | 216                                                                                    | 0.655                                                                                                        | 78250.1                                                                                                                                                                                            | 51246                                                                                                         | 135                                                                                                                                                    | 368692                                                                                                                   | 10-14                                                                                                           |  |  |  |  |
| 0.000585                                                                                                              | 10                                                                                     | 302                                                                                    | 0.630                                                                                                        | 71937.5                                                                                                                                                                                            | 45324                                                                                                         | 189                                                                                                                                                    | 350683                                                                                                                   | 15-19                                                                                                           |  |  |  |  |
| 0.000860                                                                                                              | 15                                                                                     | 428                                                                                    | 0.584                                                                                                        | 68523.7                                                                                                                                                                                            | 40021                                                                                                         | 268                                                                                                                                                    | 334554                                                                                                                   | 20-24                                                                                                           |  |  |  |  |
| 0.001279                                                                                                              | 20                                                                                     | 431                                                                                    | 0.585                                                                                                        | 60211.3                                                                                                                                                                                            | 35243                                                                                                         | 270                                                                                                                                                    | 267559                                                                                                                   | 25-29                                                                                                           |  |  |  |  |
| 0.001611                                                                                                              | 25                                                                                     | 479                                                                                    | 0.623                                                                                                        | 49795.6                                                                                                                                                                                            | 31004                                                                                                         | 300                                                                                                                                                    | 230397                                                                                                                   | 30-34                                                                                                           |  |  |  |  |
| 0.002079                                                                                                              | 30                                                                                     | 565                                                                                    | 0.615                                                                                                        | 44226.8                                                                                                                                                                                            | 27215                                                                                                         | 354                                                                                                                                                    | 211871                                                                                                                   | 35-39                                                                                                           |  |  |  |  |
| 0.002668                                                                                                              | 35                                                                                     | 722                                                                                    | 0.589                                                                                                        | 40443.8                                                                                                                                                                                            | 23804                                                                                                         | 452                                                                                                                                                    | 192567                                                                                                                   | 40-44                                                                                                           |  |  |  |  |
| 0.003748                                                                                                              | 40                                                                                     | 1113                                                                                   | 0.569                                                                                                        | 36344.5                                                                                                                                                                                            | 20687                                                                                                         | 697                                                                                                                                                    | 170878                                                                                                                   | 45-49                                                                                                           |  |  |  |  |
| 0.006512                                                                                                              | 45                                                                                     | 1375                                                                                   | 0.588                                                                                                        | 30100.8                                                                                                                                                                                            | 17691                                                                                                         | 861                                                                                                                                                    | 130130                                                                                                                   | 50-54                                                                                                           |  |  |  |  |
| 0.010564                                                                                                              | 50                                                                                     | 1622                                                                                   | 0.673                                                                                                        | 22105.5                                                                                                                                                                                            | 14880                                                                                                         | 1016                                                                                                                                                   | 90925                                                                                                                    | 55-59                                                                                                           |  |  |  |  |
| 0.017840                                                                                                              | 55                                                                                     | 1585                                                                                   | 0.788                                                                                                        | 15526.8                                                                                                                                                                                            | 12240                                                                                                         | 993                                                                                                                                                    | 64343                                                                                                                    | 60-64                                                                                                           |  |  |  |  |
| 0.024640                                                                                                              | 60                                                                                     | 2055                                                                                   | 0.860                                                                                                        | 11534.0                                                                                                                                                                                            | 9921                                                                                                          | 1287                                                                                                                                                   | 50997                                                                                                                    | 65-69                                                                                                           |  |  |  |  |
| 0.040293                                                                                                              | 65                                                                                     | 2786                                                                                   | 0.818                                                                                                        | 9278.7                                                                                                                                                                                             | 7587                                                                                                          | 1745                                                                                                                                                   | 41790                                                                                                                    | 70-74                                                                                                           |  |  |  |  |
| 0.066668                                                                                                              | 70                                                                                     | 2759                                                                                   | 0.746                                                                                                        | 6814.8                                                                                                                                                                                             | 5086                                                                                                          | 1728                                                                                                                                                   | 26358                                                                                                                    | 74-79                                                                                                           |  |  |  |  |
| 0.104671                                                                                                              | 75                                                                                     | 4003                                                                                   | 0.621                                                                                                        | 4644.2                                                                                                                                                                                             | 2883                                                                                                          | 2507                                                                                                                                                   | 20084                                                                                                                    | 80+                                                                                                             |  |  |  |  |
| 0.199296                                                                                                              | 80                                                                                     |                                                                                        | 0.63                                                                                                         | Median value                                                                                                                                                                                       |                                                                                                               |                                                                                                                                                        |                                                                                                                          |                                                                                                                 |  |  |  |  |
|                                                                                                                       |                                                                                        |                                                                                        | 1.60                                                                                                         | Correction                                                                                                                                                                                         |                                                                                                               |                                                                                                                                                        |                                                                                                                          |                                                                                                                 |  |  |  |  |
|                                                                                                                       |                                                                                        | Estima                                                                                 | tion of mortality comp                                                                                       | etion of civil status                                                                                                                                                                              | and passport /female                                                                                          | es 2015                                                                                                                                                |                                                                                                                          |                                                                                                                 |  |  |  |  |
| Corrected<br>number of<br>deaths nMx                                                                                  | x                                                                                      | Corrected<br>number of<br>deaths                                                       | N^(X)/N(X)                                                                                                   | N(X)                                                                                                                                                                                               | N^(A)                                                                                                         | Total Civil<br>status<br>deaths/females                                                                                                                | Total females                                                                                                            | Age group                                                                                                       |  |  |  |  |
| <u>0.017</u>                                                                                                          | 0                                                                                      |                                                                                        |                                                                                                              |                                                                                                                                                                                                    | 54425                                                                                                         | 732                                                                                                                                                    | 364526                                                                                                                   | 0-4                                                                                                             |  |  |  |  |
| <u>0.004</u>                                                                                                          | 1                                                                                      | 227                                                                                    | 0.63                                                                                                         | 75987                                                                                                                                                                                              | 47581                                                                                                         | 127                                                                                                                                                    | 395346                                                                                                                   | 5-9                                                                                                             |  |  |  |  |
| 0.00057                                                                                                               | 5                                                                                      | 154                                                                                    | 0.57                                                                                                         | 74295                                                                                                                                                                                              | 42081                                                                                                         | 86                                                                                                                                                     | 347605                                                                                                                   | 10-14                                                                                                           |  |  |  |  |
| 0.00044                                                                                                               | 10                                                                                     | 192                                                                                    | 0.55                                                                                                         | 67565                                                                                                                                                                                              | 37241                                                                                                         | 107                                                                                                                                                    | 328045                                                                                                                   | 15-19                                                                                                           |  |  |  |  |
| 0.00058                                                                                                               | 15                                                                                     | 218                                                                                    | 0.52                                                                                                         | (2500                                                                                                                                                                                              |                                                                                                               |                                                                                                                                                        |                                                                                                                          |                                                                                                                 |  |  |  |  |
| 0.00071                                                                                                               | 20                                                                                     |                                                                                        |                                                                                                              | 03500                                                                                                                                                                                              | 32929                                                                                                         | 122                                                                                                                                                    | 306957                                                                                                                   | 20-24                                                                                                           |  |  |  |  |
| 0.00101                                                                                                               | 20                                                                                     | 254                                                                                    | 0.52                                                                                                         | 55979                                                                                                                                                                                              | 32929<br>29091                                                                                                | 122<br>142                                                                                                                                             | 306957<br>252836                                                                                                         | 20-24<br>25-29                                                                                                  |  |  |  |  |
|                                                                                                                       | 20                                                                                     | 254<br>317                                                                             | 0.52                                                                                                         | 55979<br>48711                                                                                                                                                                                     | 32929<br>29091<br>25668                                                                                       | 122<br>142<br>177                                                                                                                                      | 306957<br>252836<br>234272                                                                                               | 20-24<br>25-29<br>30-34                                                                                         |  |  |  |  |
| 0.00135                                                                                                               | 20<br>25<br>30                                                                         | 254<br>317<br>326                                                                      | 0.52<br>0.53<br>0.50                                                                                         | 55979<br>48711<br>44960                                                                                                                                                                            | 32929<br>29091<br>25668<br>22598                                                                              | 122<br>142<br>177<br>182                                                                                                                               | 306957<br>252836<br>234272<br>215329                                                                                     | 20-24<br>25-29<br>30-34<br>35-39                                                                                |  |  |  |  |
| 0.00135                                                                                                               | 20<br>25<br>30<br>35                                                                   | 254<br>317<br>326<br>469                                                               | 0.52<br>0.53<br>0.50<br>0.48                                                                                 | 65500<br>55979<br>48711<br>44960<br>41088                                                                                                                                                          | 32929<br>29091<br>25668<br>22598<br>19872                                                                     | 122<br>142<br>177<br>182<br>262                                                                                                                        | 306957<br>252836<br>234272<br>215329<br>195555                                                                           | 20-24<br>25-29<br>30-34<br>35-39<br>40-44                                                                       |  |  |  |  |
| 0.00135<br>0.00151<br>0.00240                                                                                         | 20<br>25<br>30<br>35<br>40                                                             | 254<br>317<br>326<br>469<br>617                                                        | 0.52<br>0.53<br>0.50<br>0.48<br>0.48                                                                         | 65300<br>55979<br>48711<br>44960<br>41088<br>36496                                                                                                                                                 | 32929<br>29091<br>25668<br>22598<br>19872<br>17378                                                            | 122<br>142<br>177<br>182<br>262<br>345                                                                                                                 | 306957<br>252836<br>234272<br>215329<br>195555<br>169408                                                                 | 20-24<br>25-29<br>30-34<br>35-39<br>40-44<br>45-49                                                              |  |  |  |  |
| 0.00135<br>0.00151<br>0.00240<br>0.00364                                                                              | 20<br>25<br>30<br>35<br>40<br>45                                                       | 254<br>317<br>326<br>469<br>617<br>779                                                 | 0.52<br>0.53<br>0.50<br>0.48<br>0.48<br>0.51                                                                 | 65300           55979           48711           44960           41088           36496           29873                                                                                              | 32929<br>29091<br>25668<br>22598<br>19872<br>17378<br>15088                                                   | 122<br>142<br>177<br>182<br>262<br>345<br>435                                                                                                          | 306957<br>252836<br>234272<br>215329<br>195555<br>169408<br>129318                                                       | 20-24<br>25-29<br>30-34<br>35-39<br>40-44<br>45-49<br>50-54                                                     |  |  |  |  |
| 0.00135<br>0.00151<br>0.00240<br>0.00364<br>0.00602                                                                   | 20<br>25<br>30<br>35<br>40<br>45<br>50                                                 | 254<br>317<br>326<br>469<br>617<br>779<br>1020                                         | 0.52<br>0.53<br>0.50<br>0.48<br>0.48<br>0.51<br>0.59                                                         | 65300           55979           48711           44960           41088           36496           29873           22116                                                                              | 32929<br>29091<br>25668<br>22598<br>19872<br>17378<br>15088<br>12972                                          | 122<br>142<br>177<br>182<br>262<br>345<br>435<br>570                                                                                                   | 306957<br>252836<br>234272<br>215329<br>195555<br>169408<br>129318<br>91841                                              | 20-24<br>25-29<br>30-34<br>35-39<br>40-44<br>45-49<br>50-54<br>55-59                                            |  |  |  |  |
| 0.00135<br>0.00151<br>0.00240<br>0.00364<br>0.00602<br>0.01111                                                        | 20<br>25<br>30<br>35<br>40<br>45<br>50<br>55                                           | 254<br>317<br>326<br>469<br>617<br>779<br>1020<br>1335                                 | 0.52<br>0.53<br>0.50<br>0.48<br>0.48<br>0.51<br>0.59<br>0.71                                                 | 65300           55979           48711           44960           41088           36496           29873           22116           15508                                                              | 32929<br>29091<br>25668<br>22598<br>19872<br>17378<br>15088<br>12972<br>10968                                 | 122<br>142<br>177<br>182<br>262<br>345<br>435<br>570<br>746                                                                                            | 306957<br>252836<br>234272<br>215329<br>195555<br>169408<br>129318<br>91841<br>63235                                     | 20-24<br>25-29<br>30-34<br>35-39<br>40-44<br>45-49<br>50-54<br>55-59<br>60-64                                   |  |  |  |  |
| 0.00135<br>0.00151<br>0.00240<br>0.00364<br>0.00602<br>0.01111<br>0.02111                                             | 20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60                                     | 254<br>317<br>326<br>469<br>617<br>779<br>1020<br>1335<br>1779                         | 0.52<br>0.53<br>0.50<br>0.48<br>0.48<br>0.51<br>0.59<br>0.71<br>0.77                                         | 65300           55979           48711           44960           41088           36496           29873           22116           15508           11661                                              | 32929<br>29091<br>25568<br>22598<br>19872<br>17378<br>15088<br>12972<br>10968<br>9025                         | 122<br>142<br>177<br>182<br>262<br>345<br>435<br>570<br>746<br>994                                                                                     | 306957<br>252836<br>234272<br>215329<br>195555<br>169408<br>129318<br>91841<br>63235<br>53370                            | 20-24<br>25-29<br>30-34<br>35-39<br>40-44<br>45-49<br>50-54<br>55-59<br>60-64<br>65-69                          |  |  |  |  |
| 0.00135<br>0.00151<br>0.00240<br>0.00364<br>0.00602<br>0.01111<br>0.02111<br>0.03333                                  | 20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>65                               | 254<br>317<br>326<br>469<br>617<br>779<br>1020<br>1335<br>1779<br>2301                 | 0.52<br>0.53<br>0.50<br>0.48<br>0.48<br>0.51<br>0.59<br>0.71<br>0.77<br>0.78                                 | 65300           55979           48711           44960           41088           36496           29873           22116           15508           11661           9108                               | 32929<br>29091<br>25668<br>22598<br>19872<br>17378<br>15088<br>12972<br>10968<br>9025<br>7069                 | 122<br>142<br>177<br>182<br>262<br>345<br>435<br>570<br>746<br>994<br>1286                                                                             | 306957<br>252836<br>234272<br>215329<br>195555<br>169408<br>129318<br>91841<br>63235<br>53370<br>37710                   | 20-24<br>25-29<br>30-34<br>35-39<br>40-44<br>45-49<br>50-54<br>55-59<br>60-64<br>65-69<br>70-74                 |  |  |  |  |
| 0.00135<br>0.00151<br>0.00240<br>0.00364<br>0.00602<br>0.01111<br>0.02111<br>0.03333<br>0.06103                       | 20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>65<br>70                         | 254<br>317<br>326<br>469<br>617<br>779<br>1020<br>1335<br>1779<br>2301<br>2500         | 0.52<br>0.53<br>0.50<br>0.48<br>0.48<br>0.51<br>0.59<br>0.71<br>0.77<br>0.78<br>0.80                         | 65300           55979           48711           44960           41088           36496           29873           22116           15508           11661           9108           6315                | 32929<br>29091<br>25668<br>22598<br>19872<br>17378<br>15088<br>12972<br>10968<br>9025<br>7069<br>5058         | 122<br>142<br>177<br>182<br>262<br>345<br>435<br>570<br>746<br>994<br>1286<br>1397                                                                     | 306957<br>252836<br>234272<br>215329<br>195555<br>169408<br>129318<br>91841<br>63235<br>53370<br>37710<br>25443          | 20-24<br>25-29<br>30-34<br>35-39<br>40-44<br>45-49<br>50-54<br>55-59<br>60-64<br>65-69<br>70-74<br>74-79        |  |  |  |  |
| 0.00135<br>0.00151<br>0.00240<br>0.00364<br>0.00602<br>0.01111<br>0.02111<br>0.03333<br>0.06103<br>0.09826            | 20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>65<br>70<br>75                   | 254<br>317<br>326<br>469<br>617<br>779<br>1020<br>1335<br>1779<br>2301<br>2500<br>4911 | 0.52<br>0.53<br>0.50<br>0.48<br>0.48<br>0.51<br>0.59<br>0.71<br>0.77<br>0.77<br>0.78<br>0.80<br>0.68         | 65300           55979           48711           44960           41088           36496           29873           22116           15508           11661           9108           6315           4634 | 32929<br>29091<br>25668<br>22598<br>19872<br>17378<br>15088<br>12972<br>10968<br>9025<br>7069<br>5058<br>3171 | 122<br>142<br>177<br>182<br>262<br>345<br>435<br>570<br>746<br>994<br>1286<br>1397<br>2744                                                             | 306957<br>252836<br>234272<br>215329<br>195555<br>169408<br>129318<br>91841<br>63235<br>53370<br>37710<br>25443<br>20897 | 20-24<br>25-29<br>30-34<br>35-39<br>40-44<br>45-49<br>50-54<br>55-59<br>60-64<br>65-69<br>70-74<br>74-79<br>80+ |  |  |  |  |
| 0.00135<br>0.00151<br>0.00240<br>0.00364<br>0.00602<br>0.01111<br>0.02111<br>0.03333<br>0.06103<br>0.09826<br>0.23499 | 20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>65<br>60<br>65<br>70<br>75<br>80 | 254<br>317<br>326<br>469<br>617<br>779<br>1020<br>1335<br>1779<br>2301<br>2500<br>4911 | 0.52<br>0.53<br>0.50<br>0.48<br>0.48<br>0.51<br>0.59<br>0.71<br>0.77<br>0.78<br>0.80<br>0.68<br>0.68<br>0.56 | 555979<br>48711<br>44960<br>41088<br>36496<br>29873<br>22116<br>15508<br>11661<br>9108<br>6315<br>4634<br>Median value                                                                             | 32929<br>29091<br>25668<br>22598<br>19872<br>17378<br>15088<br>12972<br>10968<br>9025<br>7069<br>5058<br>3171 | 122         142         177         182         262         345         435         570         746         994         1286         1397         2744 | 306957<br>252836<br>234272<br>215329<br>195555<br>169408<br>129318<br>91841<br>63235<br>53370<br>37710<br>25443<br>20897 | 20-24<br>25-29<br>30-34<br>35-39<br>40-44<br>45-49<br>50-54<br>55-59<br>60-64<br>65-69<br>70-74<br>74-79<br>80+ |  |  |  |  |

Appendix (3): Detailed tables of attempts to estimate  $\alpha$  and  $\beta$  values

|          |                |                    | Table of attempts        | to estimate the valu | les of a, β for the to         | tal male population                   | I                           |                                 |         |
|----------|----------------|--------------------|--------------------------|----------------------|--------------------------------|---------------------------------------|-----------------------------|---------------------------------|---------|
|          |                |                    |                          | -                    |                                | -                                     |                             |                                 |         |
| 1        | 2              | 3                  | 4                        | 5                    | 6                              | 7                                     | 8                           | 9                               | 10      |
| X        | l <sub>x</sub> | l <sub>x(10)</sub> | nQx                      | n <b>P</b> 10        | $\int_{n}^{p} \int_{10} cond.$ | logit( <sup>p</sup> <sub>10</sub> ) Y | Y <sup>s</sup> <sub>x</sub> | Y <sup>s</sup> <sub>x(10)</sub> | β       |
| 1        | 0.97856        |                    | 0.0184                   | 0.98160              |                                | -1.9884                               | -1.91041                    |                                 |         |
| 5        | 0.97521        |                    |                          |                      |                                |                                       | -1.83611                    |                                 |         |
| 10       | 0.97303        | 0.97303            | 0.00470                  | 0.99530              | 0.97684                        | -1.87085                              | -1.7928                     | -1.79284                        | 1.00000 |
| 15       | 0.97119        | 0.94500            | 0.00709                  | 0.99291              | 0.96991                        | -1.73657                              | -1.7589                     | -1.42190                        | 0.51554 |
| 20       | 0.96758        | 0.94148            | 0.01018                  | 0.98982              | 0.96689                        | -1.68718                              | -1.6980                     | -1.38908                        | 0.57783 |
| 25       | 0.96261        | 0.93665            | 0.00980                  | 0.99020              | 0.96727                        | -1.69302                              | -1.6241                     | -1.34680                        | 0.52413 |
| 30       | 0.95773        | 0.93190            | 0.01227                  | 0.98773              | 0.96485                        | -1.65620                              | -1.5602                     | -1.30812                        | 0.55159 |
| 35       | 0.95227        | 0.92659            | 0.01502                  | 0.98498              | 0.96216                        | -1.61789                              | -1.4966                     | -1.26771                        | 0.57651 |
| 40       | 0.94512        | 0.91963            | 0.02499                  | 0.97501              | 0.95242                        | -1.49833                              | -1.4231                     | -1.21867                        | 0.70848 |
| 45       | 0.93416        | 0.90897            | 0.03676                  | 0.96324              | 0.94092                        | -1.38401                              | -1.3262                     | -1.15054                        | 0.79540 |
| 50       | 0.91556        | 0.89087            | 0.06646                  | 0.93354              | 0.91191                        | -1.16861                              | -1.1917                     | -1.04982                        | 0.95260 |
| 55       | 0.88503        | 0.86116            | 0.10042                  | 0.89958              | 0.87874                        | -0.99028                              | -1.0205                     | -0.91248                        | 1.00021 |
| 60       | 0.83508        | 0.81256            | 0.17223                  | 0.82777              | 0.80860                        | -0.72047                              | -0.8110                     | -0.73336                        | 1.07722 |
| 65       | 0.75995        | 0.73945            | 0.20837                  | 0.79163              | 0.77329                        | -0.61349                              | -0.5762                     | -0.52157                        | 0.98998 |
| 70       | 0.65154        | 0.63397            | 0.33950                  | 0.66050              | 0.64520                        | -0.29901                              | -0.3129                     | -0.27464                        | 1.03279 |
| 75       | 0.50591        | 0.49227            | 0.39401                  | 0.60599              | 0.59195                        | -0.18602                              | -0.0118                     | 0.01547                         | 0.93588 |
| 80       | 0.33422        | 0.32521            | 1.00000                  | 0.00000              | 0.00000                        | #DIV/0!                               | 0.3446                      | 0.36497                         |         |
|          |                |                    |                          |                      |                                |                                       |                             |                                 | 11.2382 |
|          |                |                    |                          |                      |                                |                                       |                             |                                 | 0.80273 |
| 11       | 12             | 13                 | 14                       | 15                   | 16                             | 17                                    | 18                          | 19                              | 20      |
| Y^(2)    | P^(2)          | P^(2)              | Logit P <sup>^</sup> (2) | β2                   | Y^(3)                          | P^(3)                                 | P^(3)                       | Logit P <sup>^</sup> (3)        | β3      |
|          |                |                    |                          |                      |                                |                                       |                             |                                 |         |
|          |                |                    |                          |                      |                                |                                       |                             |                                 |         |
| -1.89404 | 0.97786        | 0.977862           | -1.89404                 | 0.80273              | -1.88593                       | 0.97751                               | 0.97751                     | -1.88593                        | 0.87171 |
| -1.86679 | 0.97665        | 0.955030           | -1.52788                 | 0.94273              | -1.85634                       | 0.97617                               | 0.95421                     | -1.51846                        | 0.96202 |
| -1.81792 | 0.97432        | 0.952746           | -1.50191                 | 0.93321              | -1.80326                       | 0.97357                               | 0.95167                     | -1.49013                        | 0.95580 |
| -1.75860 | 0.97117        | 0.949674           | -1.46880                 | 0.92195              | -1.73886                       | 0.97005                               | 0.94823                     | -1.45388                        | 0.94841 |
| -1.70733 | 0.96816        | 0.946727           | -1.43879                 | 0.91257              | -1.68317                       | 0.96664                               | 0.94489                     | -1.42091                        | 0.94224 |
| -1.65627 | 0.96486        | 0.943497           | -1.40765                 | 0.90363              | -1.62773                       | 0.96287                               | 0.94121                     | -1.38662                        | 0.93635 |
| -1.59722 | 0.96062        | 0.939359           | -1.37011                 | 0.89383              | -1.56361                       | 0.95800                               | 0.93645                     | -1.34517                        | 0.92989 |
| -1.51946 | 0.95430        | 0.933176           | -1.31827                 | 0.88192              | -1.47916                       | 0.95066                               | 0.92927                     | -1.28779                        | 0.92202 |
| -1.41153 | 0.94391        | 0.923013           | -1.24200                 | 0.86732              | -1.36195                       | 0.93842                               | 0.91732                     | -1.20321                        | 0.91240 |
| -1.27404 | 0.92744        | 0.906913           | -1.13826                 | 0.85192              | -1.21265                       | 0.91874                               | 0.89807                     | -1.08799                        | 0.90229 |
| -1.10592 | 0.90131        | 0.881354           | -1.00266                 | 0.83748              | -1.03008                       | 0.88697                               | 0.86702                     | -0.93743                        | 0.89289 |
| -0.91741 | 0.86234        | 0.843246           | -0.84129                 | 0.82596              | -0.82537                       | 0.83899                               | 0.82012                     | -0.75859                        | 0.88551 |
| -0.70606 | 0.80410        | 0.786299           | -0.65138                 | 0.81737              | -0.59586                       | 0.76705                               | 0.74979                     | -0.54876                        | 0.88011 |
| -0.46437 | 0.71682        | 0.700951           | -0.42591                 | 0.81132              | -0.33340                       | 0.66078                               | 0.64592                     | -0.30058                        | 0.87640 |
| 0 17929  | 0.59921        | 0.575195           | 0 15152                  |                      | 0.02272                        | 0.51126                               | 0.40086                     | 0.000280                        |         |

| 12.20394 | 12.8180 |
|----------|---------|
| 0.87171  | 0.91557 |

| 21       | 22      | 23          | 24                       | 25       | 26       | 27       | 28                       | 29                       | 30       |
|----------|---------|-------------|--------------------------|----------|----------|----------|--------------------------|--------------------------|----------|
| Y^(4)    | P^(4)   | P^(4)       | Logit P <sup>^</sup> (4) | β4       | Y^(5)    | P^(5)    | P^(5) cond.              | Logit P <sup>^</sup> (5) | β5       |
|          |         |             |                          |          |          |          |                          |                          |          |
|          |         |             |                          |          |          |          |                          |                          |          |
| -1.88078 | 0.97728 | 0.97728     | -1.88078                 | 0.91557  | -1.87747 | 0.97713  | 0.97713                  | -1.87747                 | 0.94372  |
| -1.84970 | 0.97586 | 0.95369     | -1.51246                 | 0.97429  | -1.84543 | 0.97566  | 0.95335                  | -1.50862                 | 0.98216  |
| -1.79395 | 0.97309 | 0.95098     | -1.48263                 | 0.97019  | -1.78797 | 0.97277  | 0.95053                  | -1.47781                 | 0.97943  |
| -1.72630 | 0.96931 | 0.94729     | -1.44436                 | 0.96531  | -1.71824 | 0.96883  | 0.94667                  | -1.43824                 | 0.97617  |
| -1.66781 | 0.96563 | 0.94369     | -1.40948                 | 0.96122  | -1.65796 | 0.96497  | 0.94290                  | -1.40212                 | 0.97345  |
| -1.60958 | 0.96155 | 0.93970     | -1.37314                 | 0.95732  | -1.59794 | 0.96068  | 0.93871                  | -1.36445                 | 0.97084  |
| -1.54223 | 0.95625 | 0.93452     | -1.32916                 | 0.95304  | -1.52851 | 0.95508  | 0.93324                  | -1.31882                 | 0.96798  |
| -1.45354 | 0.94819 | 0.92665     | -1.26818                 | 0.94783  | -1.43709 | 0.94656  | 0.92491                  | -1.25551                 | 0.96451  |
| -1.33043 | 0.93468 | 0.91344     | -1.1782                  | 0.94146  | -1.3102  | 0.93216  | 0.91085                  | -1.16201                 | 0.96027  |
| -1.17361 | 0.91271 | 0.89198     | -1.05555                 | 0.93480  | -1.14856 | 0.90864  | 0.88786                  | -1.03454                 | 0.95586  |
| -0.98185 | 0.87693 | 0.85701     | -0.89534                 | 0.92866  | -0.95091 | 0.87010  | 0.85020                  | -0.86809                 | 0.95181  |
| -0.76685 | 0.82255 | 0.80386     | -0.70529                 | 0.92388  | -0.72929 | 0.81132  | 0.79276                  | -0.67084                 | 0.94869  |
| -0.52578 | 0.74108 | 0.72424     | -0.48279                 | 0.92044  | -0.48082 | 0.72345  | 0.70691                  | -0.4402                  | 0.94647  |
| -0.25012 | 0.62251 | 0.60837     | -0.22023                 | 0.91812  | -0.19667 | 0.59709  | 0.58344                  | -0.16845                 | 0.94501  |
| 0.07620  | 0.46198 | 0.45148     | 0.097346                 |          | 0.139668 | 0.43062  | 0.42077                  | 0.159807                 |          |
|          |         |             |                          | 13.2121  |          |          |                          |                          | 13.46636 |
|          |         |             |                          | 0.943722 |          |          |                          |                          | 0.961883 |
| 31       | 32      | 33          | 34                       | 35       | 36       | 37       | 38                       | 39                       | 40       |
| Y^(6)    | P^(6)   | P^(6) cond. | Logit P <sup>^</sup> (6) | β6       | Y^(7)    | P^(7)    | P <sup>^</sup> (7) cond. | Logit P <sup>^</sup> (7) | β7       |
|          |         |             |                          |          |          |          |                          |                          |          |
|          |         |             |                          |          |          |          |                          |                          |          |
| -1.87533 | 0.97704 | 0.97704     | -1.87533                 | 0.96188  | -1.87395 | 0.976975 | 0.97698                  | -1.87395                 | 0.97364  |
| -1.84268 | 0.97553 | 0.95313     | -1.50613                 | 0.98724  | -1.8409  | 0.975441 | 0.95298                  | -1.50453                 | 0.990532 |
| -1.78411 | 0.97257 | 0.95024     | -1.4747                  | 0.98539  | -1.78161 | 0.972434 | 0.95004                  | -1.47269                 | 0.989258 |
| -1.71304 | 0.96851 | 0.94627     | -1.43428                 | 0.98319  | -1.70967 | 0.968304 | 0.94601                  | -1.43172                 | 0.987743 |
| -1.65160 | 0.96454 | 0.94239     | -1.39736                 | 0.98135  | -1.64748 | 0.964255 | 0.94205                  | -1.39427                 | 0.986477 |
| -1.59042 | 0.96011 | 0.93806     | -1.35883                 | 0.97959  | -1.58556 | 0.959733 | 0.93764                  | -1.35518                 | 0.985267 |
| -1.51966 | 0.95432 | 0.93241     | -1.31212                 | 0.97766  | -1.51393 | 0.953817 | 0.93186                  | -1.30778                 | 0.983945 |
| -1.42648 | 0.94547 | 0.92376     | -1.24729                 | 0.97532  | -1.41961 | 0.944759 | 0.92301                  | -1.24196                 | 0.982343 |
| -1.29715 | 0.93049 | 0.90913     | -1.15151                 | 0.97247  | -1.2887  | 0.929392 | 0.90799                  | -1.14469                 | 0.980399 |
| -1.13240 | 0.90592 | 0.88512     | -1.02091                 | 0.96952  | -1.12194 | 0.904121 | 0.88330                  | -1.01205                 | 0.978393 |
| -0.93094 | 0.86552 | 0.84564     | -0.85041                 | 0.96683  | -0.91802 | 0.862479 | 0.84262                  | -0.83893                 | 0.97658  |

| -0.70506 | 0.80379 | 0.78533 | -0.6485  | 0.96477  | -0.68938 | 0.798791 | 0.78040 | -0.634   | 0.975213 |
|----------|---------|---------|----------|----------|----------|----------|---------|----------|----------|
| -0.45180 | 0.71169 | 0.69535 | -0.41262 | 0.96333  | -0.43302 | 0.703922 | 0.68771 | -0.39473 | 0.974272 |
| -0.16219 | 0.58039 | 0.56707 | -0.13495 | 0.96240  | -0.13987 | 0.569484 | 0.55637 | -0.11322 | 0.97368  |
| 0.18062  | 0.41066 | 0.40123 | 0.200173 |          | 0.207133 | 0.397889 | 0.38873 | 0.226331 |          |
|          |         |         |          | 13.63096 |          |          |         |          | 13.73774 |
|          |         |         |          | 0.97364  |          |          |         |          | 0.981267 |

| 41       | 42      | 43           | 44                        | 45       | 46       | 47      | 48          | 49                       | 50       |
|----------|---------|--------------|---------------------------|----------|----------|---------|-------------|--------------------------|----------|
| Y^(8)    | P^(8)   | P^(8) cond.  | Logit P <sup>^</sup> (8)  | β8       | Y^(9)    | P^(9)   | P^(9) cond. | Logit P <sup>^</sup> (9) | β9       |
|          |         |              |                           |          |          |         |             |                          |          |
|          |         |              |                           |          |          |         |             |                          |          |
| -1.87305 | 0.97694 | 0.97694      | -1.87305                  | 0.98127  | -1.87247 | 0.97691 | 0.97691     | -1.87247                 | 0.98622  |
| -1.83974 | 0.97539 | 0.95289      | -1.50348                  | 0.99267  | -1.83899 | 0.97535 | 0.95283     | -1.50281                 | 0.99405  |
| -1.77999 | 0.97235 | 0.94992      | -1.47138                  | 0.99177  | -1.77894 | 0.97229 | 0.94984     | -1.47053                 | 0.99340  |
| -1.70749 | 0.96817 | 0.94584      | -1.43005                  | 0.99070  | -1.70607 | 0.96808 | 0.94573     | -1.42897                 | 0.99262  |
| -1.64481 | 0.96407 | 0.94183      | -1.39227                  | 0.98980  | -1.64307 | 0.96395 | 0.94169     | -1.39097                 | 0.99197  |
| -1.5824  | 0.95949 | 0.93736      | -1.35281                  | 0.98895  | -1.58035 | 0.95933 | 0.93718     | -1.35127                 | 0.99135  |
| -1.51022 | 0.95349 | 0.93150      | -1.30495                  | 0.98803  | -1.5078  | 0.95327 | 0.93126     | -1.30312                 | 0.99068  |
| -1.41516 | 0.94429 | 0.92251      | -1.23849                  | 0.98691  | -1.41226 | 0.94399 | 0.92219     | -1.23623                 | 0.98987  |
| -1.28321 | 0.92867 | 0.90725      | -1.14025                  | 0.98555  | -1.27965 | 0.92820 | 0.90676     | -1.13737                 | 0.98890  |
| -1.11515 | 0.90294 | 0.88211      | -1.00629                  | 0.98416  | -1.11074 | 0.90216 | 0.88133     | -1.00254                 | 0.98792  |
| -0.90963 | 0.86048 | 0.84063      | -0.83147                  | 0.98292  | -0.90419 | 0.85916 | 0.83933     | -0.82661                 | 0.98705  |
| -0.6792  | 0.79550 | 0.77715      | -0.62457                  | 0.98200  | -0.67259 | 0.79334 | 0.77502     | -0.61844                 | 0.98641  |
| -0.42084 | 0.69882 | 0.68270      | -0.3831                   | 0.98138  | -0.41292 | 0.69548 | 0.67942     | -0.37555                 | 0.98600  |
| -0.12539 | 0.56237 | 0.54940      | -0.09912                  | 0.98100  | -0.11598 | 0.55773 | 0.54485     | -0.08995                 | 0.98576  |
| 0.224333 | 0.38968 | 0.38069      | 0.24331                   |          | 0.235506 | 0.38438 | 0.37550     | 0.254344                 |          |
|          |         |              |                           | 13.80711 |          |         |             |                          | 13.85221 |
|          |         |              |                           | 0.986222 |          |         |             |                          | 0.989444 |
| 51       | 52      | 53           | 54                        | 55       |          |         |             |                          |          |
| Y^(10)   | P^(10)  | P^(10) cond. | Logit P <sup>^</sup> (10) | β10      |          |         |             |                          |          |
|          |         |              |                           |          |          |         |             |                          |          |
|          |         |              |                           |          |          |         |             |                          |          |
| -1.87209 | 0.97689 | 0.97689      | -1.87209                  | 0.98944  |          |         |             |                          |          |
| -1.83850 | 0.97533 | 0.95279      | -1.50237                  | 0.99495  |          |         |             |                          |          |
| -1.77826 | 0.97225 | 0.94979      | -1.46998                  | 0.99446  |          |         |             |                          |          |

0.99387

0.99338

-1.70515

-1.64195

0.96802

0.96387

0.94566

0.94160

-1.42827

-1.39012

| -1.57902 | 0.95922 | 0.93706 | -1.35027 | 0.99291  |
|----------|---------|---------|----------|----------|
| -1.50623 | 0.95313 | 0.93111 | -1.30192 | 0.99241  |
| -1.41038 | 0.94379 | 0.92198 | -1.23477 | 0.99181  |
| -1.27734 | 0.92789 | 0.90645 | -1.13549 | 0.99109  |
| -1.10787 | 0.90165 | 0.88082 | -1.0001  | 0.99036  |
| -0.90064 | 0.85831 | 0.83847 | -0.82345 | 0.98973  |
| -0.66829 | 0.79193 | 0.77363 | -0.61445 | 0.98928  |
| -0.40778 | 0.69329 | 0.67727 | -0.37063 | 0.98901  |
| -0.10987 | 0.55471 | 0.54190 | -0.08399 | 0.98886  |
| 0.24277  | 0.38094 | 0.37214 | 0.26152  |          |
|          |         |         |          | 13.88155 |
|          |         |         |          | 0.991539 |

|          |                | Table              | of attempts to e         | stimate the value | s of a, β for the t              | total female popu                     | llation                     |                                 |          |
|----------|----------------|--------------------|--------------------------|-------------------|----------------------------------|---------------------------------------|-----------------------------|---------------------------------|----------|
| 1        | 2              | 3                  | 4                        | 5                 | 6                                | 7                                     | 8                           | 9                               | 10       |
| X        | l <sub>x</sub> | l <sub>x(10)</sub> | nQx                      | nP10              | <sup>p</sup> <sub>10</sub> cond. | logit( <sup>p</sup> <sub>10</sub> ) Y | Y <sup>s</sup> <sub>x</sub> | Y <sup>s</sup> <sub>x(10)</sub> | β        |
| 1        | 0.98484        |                    | 0.0158                   | 0.98420           |                                  | -2.0659                               | -2.08691                    |                                 |          |
| 5        | 0.98248        |                    |                          |                   |                                  |                                       | -2.01337                    |                                 |          |
| 10       | 0.98123        | 0.98123            | 0.00507                  | 0.99493           | 0.98044                          | -1.95727                              | -1.9783                     | -1.97827                        | 1.00000  |
| 15       | 0.98019        | 0.96179            | 0.00532                  | 0.99468           | 0.9752                           | -1.83648                              | -1.9508                     | -1.61287                        | 0.48399  |
| 20       | 0.97846        | 0.96009            | 0.00633                  | 0.99367           | 0.9742                           | -1.81633                              | -1.9080                     | -1.59026                        | 0.50251  |
| 25       | 0.97598        | 0.95766            | 0.00710                  | 0.99290           | 0.9735                           | -1.80142                              | -1.8523                     | -1.55939                        | 0.50138  |
| 30       | 0.97285        | 0.95459            | 0.00942                  | 0.99058           | 0.9712                           | -1.75913                              | -1.7894                     | -1.52277                        | 0.54380  |
| 35       | 0.96882        | 0.95064            | 0.01153                  | 0.98847           | 0.9691                           | -1.72341                              | -1.7182                     | -1.47895                        | 0.56336  |
| 40       | 0.96319        | 0.94511            | 0.02015                  | 0.97985           | 0.9607                           | -1.59796                              | -1.6322                     | -1.42299                        | 0.70484  |
| 45       | 0.95466        | 0.93674            | 0.02839                  | 0.97161           | 0.9526                           | -1.50033                              | -1.5236                     | -1.34758                        | 0.76500  |
| 50       | 0.94074        | 0.92308            | 0.05433                  | 0.94567           | 0.9272                           | -1.27203                              | -1.3824                     | -1.24249                        | 0.94015  |
| 55       | 0.91928        | 0.90203            | 0.07452                  | 0.92548           | 0.9074                           | -1.14103                              | -1.2163                     | -1.10997                        | 0.94671  |
| 60       | 0.88619        | 0.86956            | 0.15195                  | 0.84805           | 0.8315                           | -0.79803                              | -1.0262                     | -0.94852                        | 1.11375  |
| 65       | 0.83458        | 0.81891            | 0.17679                  | 0.82321           | 0.8071                           | -0.71565                              | -0.8092                     | -0.75451                        | 1.01340  |
| 70       | 0.75048        | 0.73639            | 0.32439                  | 0.67561           | 0.6624                           | -0.33700                              | -0.5506                     | -0.51365                        | 1.09893  |
| 75       | 0.62087        | 0.60922            | 0.36639                  | 0.63361           | 0.6212                           | -0.24735                              | -0.2466                     | -0.22201                        | 0.97515  |
| 80       | 0.44318        | 0.43486            | 1.00000                  | 0.00000           | 0.0000                           | #DIV/0!                               | 0.1141                      | 0.13102                         |          |
|          |                |                    |                          |                   |                                  |                                       |                             |                                 | 11.1530  |
|          |                |                    |                          |                   |                                  |                                       |                             |                                 | 0.796641 |
| 11       | 12             | 13                 | 14                       | 15                | 16                               | 17                                    | 18                          | 19                              | 20       |
| Y^(2)    | P^(2)          | P^(2)              | Logit P <sup>^</sup> (2) | β2                | Y^(3)                            | P^(3)                                 | P^(3)                       | Logit P <sup>^</sup> (3)        | β3       |
|          |                |                    |                          |                   |                                  |                                       |                             |                                 |          |
|          |                |                    |                          |                   |                                  |                                       |                             |                                 |          |
| -1.97937 | 0.98127        | 0.98127            | -1.97937                 | 0.79664           | -1.97105                         | 0.98096                               | 0.98096                     | -1.97105                        | 0.87320  |
| -1.95746 | 0.98045        | 0.96208            | -1.61687                 | 0.94727           | -1.94704                         | 0.98004                               | 0.96139                     | -1.60738                        | 0.96728  |
| -1.92341 | 0.97910        | 0.96076            | -1.59902                 | 0.94007           | -1.90972                         | 0.97853                               | 0.95990                     | -1.58775                        | 0.96277  |
| -1.87899 | 0.97720        | 0.95890            | -1.57487                 | 0.93085           | -1.86103                         | 0.97639                               | 0.95780                     | -1.56109                        | 0.95697  |
| -1.82892 | 0.97486        | 0.95660            | -1.54648                 | 0.92075           | -1.80615                         | 0.97372                               | 0.95518                     | -1.52964                        | 0.95059  |
| -1.77214 | 0.97192        | 0.95372            | -1.51281                 | 0.90976           | -1.74391                         | 0.97034                               | 0.95187                     | -1.49222                        | 0.94363  |
| -1.70370 | 0.96794        | 0.94981            | -1.47018                 | 0.89730           | -1.66889                         | 0.96570                               | 0.94732                     | -1.44468                        | 0.93571  |
| -1.61714 | 0.96210        | 0.94408            | -1.41318                 | 0.88287           | -1.57401                         | 0.95883                               | 0.94058                     | -1.3809                         | 0.92653  |
| -1.50464 | 0.95299        | 0.93514            | -1.33425                 | 0.86646           | -1.45070                         | 0.94792                               | 0.92987                     | -1.29234                        | 0.91609  |
| -1.37235 | 0.93961        | 0.92201            | -1.23502                 | 0.85050           | -1.30569                         | 0.93159                               | 0.91386                     | -1.18082                        | 0.90598  |
| -1.22091 | 0.91996        | 0.90273            | -1.11397                 | 0.83622           | -1.13970                         | 0.90716                               | 0.88989                     | -1.04479                        | 0.89699  |
| -1.04805 | 0.89052        | 0.87384            | -0.96769                 | 0.82424           | -0.95023                         | 0.86994                               | 0.85338                     | -0.88069                        | 0.88954  |
| -0.84201 | 0.84344        | 0.82764            | -0.78449                 | 0.81450           | -0.72439                         | 0.80981                               | 0.79439                     | -0.67581                        | 0.88358  |
| -0.59986 | 0.76848        | 0.75408            | -0.56025                 | 0.80737           | -0.45897                         | 0.71462                               | 0.70102                     | -0.42607                        | 0.87932  |

| -0.31247 | 0.65134 | 0.63914 | -0.28582 |          | -0.14396 | 0.57149 | 0.56061 | -0.12181 |          |
|----------|---------|---------|----------|----------|----------|---------|---------|----------|----------|
|          |         |         |          | 12.22481 |          |         |         |          | 12.88819 |

| 21                                                                                                                                                                  | 22                                                                                                                                                                | 23                                                                                                                                                                | 24                                                                                                                                                                               | 25                                                                                                                                                                | 26                                                                                                                                                                              | 27                                                                                                                                                                | 28                                                                                                                                                                           | 29                                                                                                                                                                             | 30                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Y^(4)                                                                                                                                                               | P^(4)                                                                                                                                                             | P^(4)                                                                                                                                                             | Logit P <sup>^</sup> (4)                                                                                                                                                         | β4                                                                                                                                                                | Y^(5)                                                                                                                                                                           | P^(5)                                                                                                                                                             | <b>P</b> <sup>^</sup> (5) cond.                                                                                                                                              | Logit P^(5)                                                                                                                                                                    | β5                                                                                                                                                                  |
|                                                                                                                                                                     |                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                  |                                                                                                                                                                   |                                                                                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                                                                                |                                                                                                                                                                     |
|                                                                                                                                                                     |                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                  |                                                                                                                                                                   |                                                                                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                                                                                |                                                                                                                                                                     |
| -1.96590                                                                                                                                                            | 0.98077                                                                                                                                                           | 0.98077                                                                                                                                                           | -1.96590                                                                                                                                                                         | 0.92058                                                                                                                                                           | -1.96268                                                                                                                                                                        | 0.98065                                                                                                                                                           | 0.98065                                                                                                                                                                      | -1.96268                                                                                                                                                                       | 0.95021                                                                                                                                                             |
| -1.94059                                                                                                                                                            | 0.97979                                                                                                                                                           | 0.96095                                                                                                                                                           | -1.60151                                                                                                                                                                         | 0.97967                                                                                                                                                           | -1.93656                                                                                                                                                                        | 0.97963                                                                                                                                                           | 0.96067                                                                                                                                                                      | -1.59784                                                                                                                                                                       | 0.98742                                                                                                                                                             |
| -1.90124                                                                                                                                                            | 0.97817                                                                                                                                                           | 0.95936                                                                                                                                                           | -1.58076                                                                                                                                                                         | 0.97684                                                                                                                                                           | -1.89594                                                                                                                                                                        | 0.97794                                                                                                                                                           | 0.95902                                                                                                                                                                      | -1.57639                                                                                                                                                                       | 0.98564                                                                                                                                                             |
| -1.84991                                                                                                                                                            | 0.97587                                                                                                                                                           | 0.95710                                                                                                                                                           | -1.55254                                                                                                                                                                         | 0.97318                                                                                                                                                           | -1.84296                                                                                                                                                                        | 0.97554                                                                                                                                                           | 0.95666                                                                                                                                                                      | -1.54718                                                                                                                                                                       | 0.98334                                                                                                                                                             |
| -1.79205                                                                                                                                                            | 0.97299                                                                                                                                                           | 0.95428                                                                                                                                                           | -1.51917                                                                                                                                                                         | 0.96915                                                                                                                                                           | -1.78324                                                                                                                                                                        | 0.97252                                                                                                                                                           | 0.95370                                                                                                                                                                      | -1.51260                                                                                                                                                                       | 0.98080                                                                                                                                                             |
| -1.72644                                                                                                                                                            | 0.96932                                                                                                                                                           | 0.95068                                                                                                                                                           | -1.47938                                                                                                                                                                         | 0.96475                                                                                                                                                           | -1.71551                                                                                                                                                                        | 0.96866                                                                                                                                                           | 0.94991                                                                                                                                                                      | -1.47131                                                                                                                                                                       | 0.97802                                                                                                                                                             |
| -1.64735                                                                                                                                                            | 0.96425                                                                                                                                                           | 0.94570                                                                                                                                                           | -1.42873                                                                                                                                                                         | 0.95973                                                                                                                                                           | -1.63388                                                                                                                                                                        | 0.96331                                                                                                                                                           | 0.94466                                                                                                                                                                      | -1.41869                                                                                                                                                                       | 0.97485                                                                                                                                                             |
| -1.54732                                                                                                                                                            | 0.95667                                                                                                                                                           | 0.93827                                                                                                                                                           | -1.36066                                                                                                                                                                         | 0.95391                                                                                                                                                           | -1.53063                                                                                                                                                                        | 0.95527                                                                                                                                                           | 0.93678                                                                                                                                                                      | -1.34790                                                                                                                                                                       | 0.97116                                                                                                                                                             |
| -1.41732                                                                                                                                                            | 0.94452                                                                                                                                                           | 0.92635                                                                                                                                                           | -1.26600                                                                                                                                                                         | 0.94729                                                                                                                                                           | -1.39644                                                                                                                                                                        | 0.94229                                                                                                                                                           | 0.92405                                                                                                                                                                      | -1.24938                                                                                                                                                                       | 0.96698                                                                                                                                                             |
| -1.26444                                                                                                                                                            | 0.92614                                                                                                                                                           | 0.90833                                                                                                                                                           | -1.14671                                                                                                                                                                         | 0.94089                                                                                                                                                           | -1.23865                                                                                                                                                                        | 0.92253                                                                                                                                                           | 0.90468                                                                                                                                                                      | -1.12518                                                                                                                                                                       | 0.96293                                                                                                                                                             |
| -1.08944                                                                                                                                                            | 0.89834                                                                                                                                                           | 0.88106                                                                                                                                                           | -1.00125                                                                                                                                                                         | 0.93523                                                                                                                                                           | -1.05801                                                                                                                                                                        | 0.89245                                                                                                                                                           | 0.87518                                                                                                                                                                      | -0.97378                                                                                                                                                                       | 0.95937                                                                                                                                                             |
| -0.88969                                                                                                                                                            | 0.85562                                                                                                                                                           | 0.83917                                                                                                                                                           | -0.82602                                                                                                                                                                         | 0.93057                                                                                                                                                           | -0.85183                                                                                                                                                                        | 0.84601                                                                                                                                                           | 0.82964                                                                                                                                                                      | -0.79154                                                                                                                                                                       | 0.95644                                                                                                                                                             |
| -0.65159                                                                                                                                                            | 0.78637                                                                                                                                                           | 0.77125                                                                                                                                                           | -0.60769                                                                                                                                                                         | 0.92688                                                                                                                                                           | -0.60608                                                                                                                                                                        | 0.77068                                                                                                                                                           | 0.75577                                                                                                                                                                      | -0.56480                                                                                                                                                                       | 0.95414                                                                                                                                                             |
| -0.37177                                                                                                                                                            | 0.67777                                                                                                                                                           | 0.66473                                                                                                                                                           | -0.34223                                                                                                                                                                         | 0.92427                                                                                                                                                           | -0.31725                                                                                                                                                                        | 0.65351                                                                                                                                                           | 0.64086                                                                                                                                                                      | -0.28955                                                                                                                                                                       | 0.95252                                                                                                                                                             |
| -0.03966                                                                                                                                                            | 0.51982                                                                                                                                                           | 0.50982                                                                                                                                                           | -0.01965                                                                                                                                                                         |                                                                                                                                                                   | 0.025546                                                                                                                                                                        | 0.48723                                                                                                                                                           | 0.47780                                                                                                                                                                      | 0.04443                                                                                                                                                                        |                                                                                                                                                                     |
|                                                                                                                                                                     |                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                  | 13.30296                                                                                                                                                          |                                                                                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                                                                                | 13.56382                                                                                                                                                            |
|                                                                                                                                                                     |                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                  | 0.950211                                                                                                                                                          |                                                                                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                                                                                | 0.968844                                                                                                                                                            |
| 31                                                                                                                                                                  | 32                                                                                                                                                                | 33                                                                                                                                                                | 34                                                                                                                                                                               | 35                                                                                                                                                                | 36                                                                                                                                                                              | 37                                                                                                                                                                | 38                                                                                                                                                                           | 39                                                                                                                                                                             | 40                                                                                                                                                                  |
| Y^(6)                                                                                                                                                               | P^(6)                                                                                                                                                             | P^(6) cond.                                                                                                                                                       | Logit P <sup>^</sup> (6)                                                                                                                                                         | β6                                                                                                                                                                | Y^(7)                                                                                                                                                                           | P^(7)                                                                                                                                                             | P^(7) cond.                                                                                                                                                                  | Logit P <sup>^</sup> (7)                                                                                                                                                       | β7                                                                                                                                                                  |
|                                                                                                                                                                     |                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                  |                                                                                                                                                                   |                                                                                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                                                                                |                                                                                                                                                                     |
| -1.96066                                                                                                                                                            |                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                  |                                                                                                                                                                   |                                                                                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                                                                                |                                                                                                                                                                     |
|                                                                                                                                                                     | 0.98057                                                                                                                                                           | 0.98057                                                                                                                                                           | -1.96066                                                                                                                                                                         | 0.96884                                                                                                                                                           | -1.95938                                                                                                                                                                        | 0.98052                                                                                                                                                           | 0.98052                                                                                                                                                                      | -1.95938                                                                                                                                                                       | 0.98060                                                                                                                                                             |
| -1.93402                                                                                                                                                            | 0.98057<br>0.97953                                                                                                                                                | 0.98057<br>0.96050                                                                                                                                                | -1.96066<br>-1.59553                                                                                                                                                             | 0.96884<br>0.99229                                                                                                                                                | -1.95938<br>-1.93242                                                                                                                                                            | 0.98052<br>0.97946                                                                                                                                                | 0.98052<br>0.96039                                                                                                                                                           | -1.95938<br>-1.59407                                                                                                                                                           | 0.98060<br>0.99537                                                                                                                                                  |
| -1.93402<br>-1.89261                                                                                                                                                | 0.98057<br>0.97953<br>0.97780                                                                                                                                     | 0.98057<br>0.96050<br>0.95880                                                                                                                                     | -1.96066<br>-1.59553<br>-1.57364                                                                                                                                                 | 0.96884<br>0.99229<br>0.99117                                                                                                                                     | -1.95938<br>-1.93242<br>-1.89050                                                                                                                                                | 0.98052<br>0.97946<br>0.97771                                                                                                                                     | 0.98052<br>0.96039<br>0.95866                                                                                                                                                | -1.95938<br>-1.59407<br>-1.5719                                                                                                                                                | 0.98060<br>0.99537<br>0.99467                                                                                                                                       |
| -1.93402<br>-1.89261<br>-1.83859                                                                                                                                    | 0.98057<br>0.97953<br>0.97780<br>0.97533                                                                                                                          | 0.98057<br>0.96050<br>0.95880<br>0.95638                                                                                                                          | -1.96066<br>-1.59553<br>-1.57364<br>-1.54381                                                                                                                                     | 0.96884<br>0.99229<br>0.99117<br>0.98973                                                                                                                          | -1.95938<br>-1.93242<br>-1.89050<br>-1.83583                                                                                                                                    | 0.98052<br>0.97946<br>0.97771<br>0.97520                                                                                                                          | 0.98052<br>0.96039<br>0.95866<br>0.95620                                                                                                                                     | -1.95938<br>-1.59407<br>-1.5719<br>-1.54168                                                                                                                                    | 0.98060<br>0.99537<br>0.99467<br>0.99377                                                                                                                            |
| -1.93402<br>-1.89261<br>-1.83859<br>-1.77769                                                                                                                        | 0.98057<br>0.97953<br>0.97780<br>0.97533<br>0.97222                                                                                                               | 0.98057<br>0.96050<br>0.95880<br>0.95638<br>0.95333                                                                                                               | -1.96066<br>-1.59553<br>-1.57364<br>-1.54381<br>-1.50846                                                                                                                         | 0.96884<br>0.99229<br>0.99117<br>0.98973<br>0.98813                                                                                                               | -1.95938<br>-1.93242<br>-1.89050<br>-1.83583<br>-1.77420                                                                                                                        | 0.98052<br>0.97946<br>0.97771<br>0.97520<br>0.97203                                                                                                               | 0.98052<br>0.96039<br>0.95866<br>0.95620<br>0.95310                                                                                                                          | -1.95938<br>-1.59407<br>-1.5719<br>-1.54168<br>-1.50585                                                                                                                        | 0.98060<br>0.99537<br>0.99467<br>0.99377<br>0.99277                                                                                                                 |
| -1.93402<br>-1.89261<br>-1.83859<br>-1.77769<br>-1.70864                                                                                                            | 0.98057<br>0.97953<br>0.97780<br>0.97533<br>0.97222<br>0.96824                                                                                                    | 0.98057<br>0.96050<br>0.95880<br>0.95638<br>0.95333<br>0.94943                                                                                                    | -1.96066<br>-1.59553<br>-1.57364<br>-1.54381<br>-1.50846<br>-1.46622                                                                                                             | 0.96884<br>0.99229<br>0.99117<br>0.98973<br>0.98813<br>0.98639                                                                                                    | -1.95938<br>-1.93242<br>-1.89050<br>-1.83583<br>-1.77420<br>-1.70430                                                                                                            | 0.98052<br>0.97946<br>0.97771<br>0.97520<br>0.97203<br>0.96797                                                                                                    | 0.98052<br>0.96039<br>0.95866<br>0.95620<br>0.95310<br>0.94912                                                                                                               | -1.95938<br>-1.59407<br>-1.5719<br>-1.54168<br>-1.50585<br>-1.46301                                                                                                            | 0.98060<br>0.99537<br>0.99467<br>0.99377<br>0.99277<br>0.992168                                                                                                     |
| -1.93402<br>-1.89261<br>-1.83859<br>-1.77769<br>-1.70864<br>-1.62541                                                                                                | 0.98057<br>0.97953<br>0.97780<br>0.97533<br>0.97222<br>0.96824<br>0.96270                                                                                         | 0.98057<br>0.96050<br>0.95880<br>0.95638<br>0.95333<br>0.94943<br>0.94400                                                                                         | -1.96066<br>-1.59553<br>-1.57364<br>-1.54381<br>-1.50846<br>-1.46622<br>-1.41236                                                                                                 | 0.96884<br>0.99229<br>0.99117<br>0.98973<br>0.98813<br>0.98639<br>0.98439                                                                                         | -1.95938<br>-1.93242<br>-1.89050<br>-1.83583<br>-1.77420<br>-1.70430<br>-1.62006                                                                                                | 0.98052<br>0.97946<br>0.97771<br>0.97520<br>0.97203<br>0.96797<br>0.96232                                                                                         | 0.98052<br>0.96039<br>0.95866<br>0.95620<br>0.95310<br>0.94912<br>0.94357                                                                                                    | -1.95938<br>-1.59407<br>-1.5719<br>-1.54168<br>-1.50585<br>-1.46301<br>-1.40835                                                                                                | 0.98060<br>0.99537<br>0.99467<br>0.99377<br>0.99277<br>0.99168<br>0.99042                                                                                           |
| -1.93402<br>-1.89261<br>-1.83859<br>-1.77769<br>-1.70864<br>-1.62541<br>-1.52013                                                                                    | 0.98057<br>0.97953<br>0.97780<br>0.97533<br>0.97222<br>0.96824<br>0.96270<br>0.95436                                                                              | 0.98057<br>0.96050<br>0.95880<br>0.95638<br>0.95333<br>0.94943<br>0.94400<br>0.93582                                                                              | -1.96066<br>-1.59553<br>-1.57364<br>-1.54381<br>-1.50846<br>-1.46622<br>-1.41236<br>-1.33984                                                                                     | 0.96884<br>0.99229<br>0.99117<br>0.98973<br>0.98813<br>0.98639<br>0.98439<br>0.98207                                                                              | -1.95938<br>-1.93242<br>-1.89050<br>-1.83583<br>-1.77420<br>-1.70430<br>-1.62006<br>-1.51351                                                                                    | 0.98052<br>0.97946<br>0.97771<br>0.97520<br>0.97203<br>0.96797<br>0.96232<br>0.95378                                                                              | 0.98052<br>0.96039<br>0.95866<br>0.95620<br>0.95310<br>0.94912<br>0.94357<br>0.93520                                                                                         | -1.95938<br>-1.59407<br>-1.5719<br>-1.54168<br>-1.50585<br>-1.46301<br>-1.46301<br>-1.40835<br>-1.33474                                                                        | 0.98060<br>0.99537<br>0.99467<br>0.99377<br>0.99277<br>0.99168<br>0.99042<br>0.98897                                                                                |
| -1.93402<br>-1.89261<br>-1.83859<br>-1.77769<br>-1.70864<br>-1.62541<br>-1.52013<br>-1.38332                                                                        | 0.98057<br>0.97953<br>0.97780<br>0.97533<br>0.97222<br>0.96824<br>0.96270<br>0.95436<br>0.94085                                                                   | 0.98057<br>0.96050<br>0.95880<br>0.95638<br>0.95333<br>0.94943<br>0.94400<br>0.93582<br>0.92257                                                                   | -1.96066<br>-1.59553<br>-1.57364<br>-1.54381<br>-1.50846<br>-1.46622<br>-1.41236<br>-1.33984<br>-1.23886                                                                         | 0.96884<br>0.99229<br>0.99117<br>0.98973<br>0.98813<br>0.98639<br>0.98439<br>0.98207<br>0.97943                                                                   | -1.95938<br>-1.93242<br>-1.89050<br>-1.83583<br>-1.77420<br>-1.70430<br>-1.62006<br>-1.51351<br>-1.37503                                                                        | 0.98052<br>0.97946<br>0.97771<br>0.97520<br>0.97203<br>0.96797<br>0.96232<br>0.95378<br>0.93992                                                                   | 0.98052<br>0.96039<br>0.95866<br>0.95620<br>0.95310<br>0.94912<br>0.94357<br>0.93520<br>0.92161                                                                              | -1.95938<br>-1.59407<br>-1.5719<br>-1.54168<br>-1.50585<br>-1.46301<br>-1.40835<br>-1.33474<br>-1.2322                                                                         | 0.98060<br>0.99537<br>0.99467<br>0.99377<br>0.99277<br>0.99168<br>0.99042<br>0.98897<br>0.98731                                                                     |
| -1.93402<br>-1.89261<br>-1.83859<br>-1.77769<br>-1.70864<br>-1.62541<br>-1.52013<br>-1.38332<br>-1.22243                                                            | 0.98057<br>0.97953<br>0.97780<br>0.97533<br>0.97222<br>0.96824<br>0.96270<br>0.95436<br>0.94085<br>0.92018                                                        | 0.98057<br>0.96050<br>0.95880<br>0.95638<br>0.95333<br>0.94943<br>0.94400<br>0.93582<br>0.92257<br>0.90231                                                        | -1.96066<br>-1.59553<br>-1.57364<br>-1.54381<br>-1.50846<br>-1.46622<br>-1.41236<br>-1.33984<br>-1.23886<br>-1.23886<br>-1.11155                                                 | 0.96884<br>0.99229<br>0.99117<br>0.98973<br>0.98813<br>0.98639<br>0.98439<br>0.98207<br>0.97943<br>0.97688                                                        | -1.95938<br>-1.93242<br>-1.89050<br>-1.83583<br>-1.77420<br>-1.70430<br>-1.62006<br>-1.51351<br>-1.37503<br>-1.21219                                                            | 0.98052<br>0.97946<br>0.97771<br>0.97520<br>0.97203<br>0.96797<br>0.96232<br>0.95378<br>0.93992<br>0.91867                                                        | 0.98052<br>0.96039<br>0.95866<br>0.95620<br>0.95310<br>0.94912<br>0.94357<br>0.93520<br>0.92161<br>0.90077                                                                   | -1.95938<br>-1.59407<br>-1.5719<br>-1.54168<br>-1.50585<br>-1.46301<br>-1.40835<br>-1.33474<br>-1.2322<br>-1.10292                                                             | 0.98060<br>0.99537<br>0.99467<br>0.99377<br>0.99277<br>0.99168<br>0.99042<br>0.98897<br>0.98731<br>0.98571                                                          |
| -1.93402<br>-1.89261<br>-1.83859<br>-1.77769<br>-1.70864<br>-1.62541<br>-1.52013<br>-1.38332<br>-1.22243<br>-1.03825                                                | 0.98057<br>0.97953<br>0.97780<br>0.97533<br>0.97222<br>0.96824<br>0.96270<br>0.95436<br>0.94085<br>0.92018<br>0.88860                                             | 0.98057<br>0.96050<br>0.95880<br>0.95638<br>0.95333<br>0.94943<br>0.94400<br>0.93582<br>0.92257<br>0.90231<br>0.87133                                             | -1.96066<br>-1.59553<br>-1.57364<br>-1.54381<br>-1.50846<br>-1.46622<br>-1.41236<br>-1.33984<br>-1.23886<br>-1.11155<br>-0.95639                                                 | 0.96884<br>0.99229<br>0.99117<br>0.98973<br>0.98813<br>0.98639<br>0.98439<br>0.98207<br>0.97943<br>0.97688<br>0.97464                                             | -1.95938<br>-1.93242<br>-1.89050<br>-1.83583<br>-1.77420<br>-1.70430<br>-1.62006<br>-1.51351<br>-1.37503<br>-1.21219<br>-1.02577                                                | 0.98052<br>0.97946<br>0.97771<br>0.97520<br>0.97203<br>0.96797<br>0.96232<br>0.95378<br>0.93992<br>0.91867<br>0.88610                                             | 0.98052<br>0.96039<br>0.95866<br>0.95620<br>0.95310<br>0.94912<br>0.94357<br>0.93520<br>0.92161<br>0.90077<br>0.86884                                                        | -1.95938<br>-1.59407<br>-1.5719<br>-1.54168<br>-1.50585<br>-1.46301<br>-1.40835<br>-1.33474<br>-1.2322<br>-1.10292<br>-0.94539                                                 | 0.98060<br>0.99537<br>0.99467<br>0.99377<br>0.99277<br>0.99168<br>0.99042<br>0.98897<br>0.98897<br>0.98571<br>0.98571                                               |
| -1.93402<br>-1.89261<br>-1.83859<br>-1.77769<br>-1.70864<br>-1.62541<br>-1.52013<br>-1.38332<br>-1.22243<br>-1.03825<br>-0.82803                                    | 0.98057<br>0.97953<br>0.97780<br>0.97533<br>0.97222<br>0.96824<br>0.96270<br>0.95436<br>0.94085<br>0.94085<br>0.92018<br>0.88860<br>0.83971                       | 0.98057<br>0.96050<br>0.95880<br>0.95638<br>0.95333<br>0.94943<br>0.94400<br>0.93582<br>0.92257<br>0.90231<br>0.87133<br>0.82339                                  | -1.96066<br>-1.59553<br>-1.57364<br>-1.54381<br>-1.50846<br>-1.46622<br>-1.41236<br>-1.33984<br>-1.23886<br>-1.11155<br>-0.95639<br>-0.76975                                     | 0.96884<br>0.99229<br>0.99117<br>0.98973<br>0.98813<br>0.98639<br>0.98439<br>0.98207<br>0.97943<br>0.977688<br>0.97464<br>0.97280                                 | -1.95938<br>-1.93242<br>-1.89050<br>-1.83583<br>-1.77420<br>-1.70430<br>-1.62006<br>-1.51351<br>-1.37503<br>-1.21219<br>-1.02577<br>-0.81300                                    | 0.98052<br>0.97946<br>0.97771<br>0.97520<br>0.97203<br>0.96797<br>0.96232<br>0.95378<br>0.93992<br>0.91867<br>0.88610<br>0.83562                                  | 0.98052<br>0.96039<br>0.95866<br>0.95620<br>0.95310<br>0.94912<br>0.94357<br>0.93520<br>0.92161<br>0.90077<br>0.86884<br>0.81934                                             | -1.95938<br>-1.59407<br>-1.5719<br>-1.54168<br>-1.50585<br>-1.46301<br>-1.40835<br>-1.33474<br>-1.2322<br>-1.10292<br>-0.94539<br>-0.75596                                     | 0.98060<br>0.99537<br>0.99467<br>0.99377<br>0.99277<br>0.99168<br>0.99042<br>0.98897<br>0.98897<br>0.98731<br>0.98571<br>0.98430<br>0.98315                         |
| -1.93402<br>-1.89261<br>-1.83859<br>-1.77769<br>-1.70864<br>-1.62541<br>-1.52013<br>-1.38332<br>-1.22243<br>-1.03825<br>-0.82803<br>-0.57745                        | 0.98057<br>0.97953<br>0.97780<br>0.97533<br>0.97222<br>0.96824<br>0.96270<br>0.95436<br>0.94085<br>0.92018<br>0.88860<br>0.83971<br>0.76041                       | 0.98057<br>0.96050<br>0.95880<br>0.95638<br>0.95333<br>0.94943<br>0.94400<br>0.93582<br>0.92257<br>0.90231<br>0.87133<br>0.82339<br>0.74563                       | -1.96066<br>-1.59553<br>-1.57364<br>-1.54381<br>-1.50846<br>-1.46622<br>-1.41236<br>-1.33984<br>-1.23886<br>-1.11155<br>-0.95639<br>-0.76975<br>-0.53772                         | 0.96884<br>0.99229<br>0.99117<br>0.98973<br>0.98813<br>0.98639<br>0.98439<br>0.98207<br>0.97943<br>0.97688<br>0.97464<br>0.97280<br>0.97135                       | -1.95938<br>-1.93242<br>-1.89050<br>-1.83583<br>-1.77420<br>-1.70430<br>-1.62006<br>-1.51351<br>-1.37503<br>-1.21219<br>-1.02577<br>-0.81300<br>-0.55939                        | 0.98052<br>0.97946<br>0.97771<br>0.97520<br>0.97203<br>0.96797<br>0.96232<br>0.95378<br>0.93992<br>0.91867<br>0.88610<br>0.83562<br>0.75376                       | 0.98052<br>0.96039<br>0.95866<br>0.95620<br>0.95310<br>0.94912<br>0.94357<br>0.93520<br>0.92161<br>0.90077<br>0.86884<br>0.81934<br>0.73908                                  | -1.95938<br>-1.59407<br>-1.5719<br>-1.54168<br>-1.50585<br>-1.46301<br>-1.40835<br>-1.33474<br>-1.2322<br>-1.10292<br>-0.94539<br>-0.75596<br>-0.52059                         | 0.98060<br>0.99537<br>0.99467<br>0.99377<br>0.99277<br>0.99168<br>0.99042<br>0.98897<br>0.98897<br>0.98571<br>0.98571<br>0.985315<br>0.98315                        |
| -1.93402<br>-1.89261<br>-1.83859<br>-1.77769<br>-1.70864<br>-1.62541<br>-1.52013<br>-1.38332<br>-1.22243<br>-1.03825<br>-0.82803<br>-0.57745<br>-0.28296            | 0.98057<br>0.97953<br>0.97780<br>0.97533<br>0.97222<br>0.96824<br>0.96270<br>0.95436<br>0.94085<br>0.92018<br>0.88860<br>0.83971<br>0.76041<br>0.63782            | 0.98057<br>0.96050<br>0.95880<br>0.95638<br>0.95333<br>0.94943<br>0.94400<br>0.93582<br>0.92257<br>0.90231<br>0.87133<br>0.82339<br>0.74563<br>0.62543            | -1.96066<br>-1.59553<br>-1.57364<br>-1.54381<br>-1.50846<br>-1.46622<br>-1.41236<br>-1.33984<br>-1.23886<br>-1.11155<br>-0.95639<br>-0.76975<br>-0.53772<br>-0.25632             | 0.96884<br>0.99229<br>0.99117<br>0.98973<br>0.98813<br>0.98639<br>0.98439<br>0.98207<br>0.97943<br>0.97943<br>0.97688<br>0.97464<br>0.97280<br>0.97135<br>0.97034 | -1.95938<br>-1.93242<br>-1.89050<br>-1.83583<br>-1.77420<br>-1.70430<br>-1.62006<br>-1.51351<br>-1.37503<br>-1.21219<br>-1.02577<br>-0.81300<br>-0.55939<br>-0.26132            | 0.98052<br>0.97946<br>0.97771<br>0.97520<br>0.97203<br>0.96797<br>0.96232<br>0.95378<br>0.93992<br>0.91867<br>0.88610<br>0.83562<br>0.75376<br>0.62776            | 0.98052<br>0.96039<br>0.95866<br>0.95620<br>0.95310<br>0.94912<br>0.94357<br>0.93520<br>0.92161<br>0.90077<br>0.86884<br>0.81934<br>0.73908<br>0.61554                       | -1.95938<br>-1.59407<br>-1.5719<br>-1.54168<br>-1.50585<br>-1.46301<br>-1.40835<br>-1.33474<br>-1.2322<br>-1.10292<br>-0.94539<br>-0.75596<br>-0.52059<br>-0.23532             | 0.98060<br>0.99537<br>0.99467<br>0.99377<br>0.99277<br>0.99168<br>0.99042<br>0.98897<br>0.98731<br>0.98571<br>0.98571<br>0.98430<br>0.98315<br>0.98224<br>0.98160   |
| -1.93402<br>-1.89261<br>-1.83859<br>-1.77769<br>-1.70864<br>-1.62541<br>-1.52013<br>-1.38332<br>-1.22243<br>-1.03825<br>-0.82803<br>-0.57745<br>-0.28296<br>0.06656 | 0.98057<br>0.97953<br>0.97780<br>0.97533<br>0.97222<br>0.96824<br>0.96270<br>0.95436<br>0.94085<br>0.92018<br>0.88860<br>0.83971<br>0.76041<br>0.63782<br>0.46677 | 0.98057<br>0.96050<br>0.95880<br>0.95638<br>0.95333<br>0.94943<br>0.94400<br>0.93582<br>0.92257<br>0.90231<br>0.87133<br>0.82339<br>0.74563<br>0.62543<br>0.45770 | -1.96066<br>-1.59553<br>-1.57364<br>-1.54381<br>-1.50846<br>-1.46622<br>-1.41236<br>-1.33984<br>-1.23886<br>-1.11155<br>-0.95639<br>-0.76975<br>-0.53772<br>-0.25632<br>0.084801 | 0.96884<br>0.99229<br>0.99117<br>0.98973<br>0.98813<br>0.98639<br>0.98439<br>0.98207<br>0.97943<br>0.97688<br>0.97688<br>0.97464<br>0.97280<br>0.97135<br>0.97034 | -1.95938<br>-1.93242<br>-1.89050<br>-1.83583<br>-1.77420<br>-1.70430<br>-1.62006<br>-1.51351<br>-1.37503<br>-1.21219<br>-1.02577<br>-0.81300<br>-0.55939<br>-0.26132<br>0.09244 | 0.98052<br>0.97946<br>0.97771<br>0.97520<br>0.97203<br>0.96797<br>0.96232<br>0.95378<br>0.93992<br>0.91867<br>0.88610<br>0.83562<br>0.75376<br>0.62776<br>0.45391 | 0.98052<br>0.96039<br>0.95866<br>0.95620<br>0.95310<br>0.94912<br>0.94357<br>0.93520<br>0.92161<br>0.90077<br>0.86884<br>0.81934<br>0.81934<br>0.73908<br>0.61554<br>0.44507 | -1.95938<br>-1.59407<br>-1.5719<br>-1.54168<br>-1.50585<br>-1.46301<br>-1.40835<br>-1.33474<br>-1.2322<br>-1.10292<br>-0.94539<br>-0.75596<br>-0.52059<br>-0.23532<br>0.110307 | 0.98060<br>0.99537<br>0.99467<br>0.99377<br>0.99277<br>0.99168<br>0.99042<br>0.98897<br>0.988731<br>0.98571<br>0.98571<br>0.98571<br>0.985315<br>0.98315<br>0.98315 |

| 0.980604 | 0.988041 |
|----------|----------|
|          |          |

#### Table of attempts to estimate the values of $a,\beta$ for male Jordanians

| 41                  | 42      | 43                   | 44                        | 45       | 46       | 47      | 48                  | 49                       | 50       |
|---------------------|---------|----------------------|---------------------------|----------|----------|---------|---------------------|--------------------------|----------|
| Y^(8)               | P^(8)   | <b>P</b> ^(8) cond.  | Logit P <sup>^</sup> (8)  | β8       | Y^(9)    | P^(9)   | <b>P</b> ^(9) cond. | Logit P <sup>^</sup> (9) | β9       |
|                     |         |                      |                           |          |          |         |                     |                          |          |
|                     |         |                      |                           |          |          |         |                     |                          |          |
| -1.95857            | 0.98049 | 0.98049              | -1.95857                  | 0.98804  | -1.95806 | 0.98047 | 0.98047             | -1.95806                 | 0.99275  |
| -1.93141            | 0.97942 | 0.96032              | -1.59315                  | 0.99731  | -1.93077 | 0.97940 | 0.96027             | -1.59256                 | 0.99854  |
| -1.88917            | 0.97765 | 0.95858              | -1.57081                  | 0.99688  | -1.88833 | 0.97761 | 0.95852             | -1.57011                 | 0.99828  |
| -1.83408            | 0.97511 | 0.95609              | -1.54033                  | 0.99632  | -1.83298 | 0.97506 | 0.95602             | -1.53948                 | 0.99794  |
| -1.77198            | 0.97191 | 0.95295              | -1.50419                  | 0.99570  | -1.77058 | 0.97184 | 0.95286             | -1.50314                 | 0.99756  |
| -1.70156            | 0.96780 | 0.94892              | -1.46097                  | 0.99503  | -1.69982 | 0.96769 | 0.94880             | -1.45968                 | 0.99715  |
| -1.61668            | 0.96207 | 0.94330              | -1.40581                  | 0.99425  | -1.61454 | 0.96191 | 0.94313             | -1.4042                  | 0.99667  |
| -1.50932            | 0.95341 | 0.93481              | -1.33151                  | 0.99334  | -1.50667 | 0.95317 | 0.93456             | -1.32946                 | 0.99612  |
| -1.36979            | 0.93932 | 0.92100              | -1.22798                  | 0.99231  | -1.36647 | 0.93894 | 0.92061             | -1.22531                 | 0.99548  |
| -1.20571            | 0.91769 | 0.89979              | -1.09745                  | 0.99131  | -1.20161 | 0.91707 | 0.89916             | -1.09398                 | 0.99487  |
| -1.01789            | 0.88450 | 0.86725              | -0.93841                  | 0.99043  | -1.01289 | 0.88348 | 0.86622             | -0.93399                 | 0.99432  |
| -0.8035             | 0.83299 | 0.81674              | -0.74722                  | 0.98971  | -0.79748 | 0.83131 | 0.81508             | -0.74168                 | 0.99387  |
| -0.54796            | 0.74949 | 0.73487              | -0.50974                  | 0.98914  | -0.54072 | 0.74677 | 0.73218             | -0.50287                 | 0.99351  |
| -0.24763            | 0.62134 | 0.60922              | -0.22202                  | 0.98873  | -0.23896 | 0.61726 | 0.60520             | -0.21359                 | 0.99325  |
| 0.108811            | 0.44581 | 0.43711              | 0.126448                  |          | 0.11918  | 0.44069 | 0.43208             | 0.136675                 |          |
|                     |         |                      |                           | 13.89852 |          |         |                     |                          | 13.94032 |
|                     |         |                      |                           | 0.992752 |          |         |                     |                          | 0.995737 |
| 51                  | 52      | 53                   | 54                        | 55       |          |         |                     |                          |          |
| Y <sup>^</sup> (10) | P^(10)  | <b>P</b> ^(10) cond. | Logit P <sup>^</sup> (10) | β10      |          |         |                     |                          |          |
|                     |         |                      |                           |          |          |         |                     |                          |          |
|                     |         |                      |                           |          |          |         |                     |                          |          |
| -1.95774            | 0.98046 | 0.98046              | -1.95774                  | 0.99574  |          |         |                     |                          |          |
| -1.93036            | 0.97938 | 0.96024              | -1.59219                  | 0.99933  |          |         |                     |                          |          |
| -1.8878             | 0.97759 | 0.95849              | -1.56967                  | 0.99917  |          |         |                     |                          |          |
| -1.83228            | 0.97502 | 0.95597              | -1.53894                  | 0.99897  |          |         |                     |                          |          |
| -1.76969            | 0.97179 | 0.95280              | -1.50248                  | 0.99874  |          |         |                     |                          |          |
| -1.69872            | 0.96762 | 0.94872              | -1.45886                  | 0.99850  |          |         |                     |                          |          |
| -1.61318            | 0.96181 | 0.94302              | -1.40318                  | 0.99821  |          |         |                     |                          |          |
| -1.50498            | 0.95302 | 0.93440              | -1.32816                  | 0.99788  |          |         |                     |                          |          |
| -1.36437            | 0.93870 | 0.92036              | -1.22361                  | 0.99749  |          |         |                     |                          |          |
| -1.19901            | 0.91668 | 0.89876              | -1.09178                  | 0.99712  |          |         |                     |                          |          |

| 1        | 2       | 3       | 4        | 5        | 6 | 7 | 8 | 9 | 10 |
|----------|---------|---------|----------|----------|---|---|---|---|----|
|          |         |         |          |          |   |   |   |   |    |
| -1.00972 | 0.88282 | 0.86557 | -0.93118 | 0.99679  |   |   |   |   |    |
| -0.79367 | 0.83024 | 0.81402 | -0.73816 | 0.99651  |   |   |   |   |    |
| -0.53614 | 0.74503 | 0.73047 | -0.4985  | 0.99628  |   |   |   |   |    |
| -0.23347 | 0.61466 | 0.60265 | -0.20825 | 0.99612  |   |   |   |   |    |
| 0.12575  | 0.43745 | 0.42891 | 0.143159 |          |   |   |   |   |    |
|          |         |         | -        | 13.96683 |   |   |   |   |    |
|          |         |         |          | 0.997631 |   |   |   |   |    |

| х                                                                                                                                                                                                            | lx                                                                                                                                                                               | lx(10)                                                                                                                                                                                                                                                                         | nQx                                                                                                                                                                                                                            | np10                                                                                                                                                                                                                                                                                          | np10 cond.                                                                                                                                                                                                  | Logit (np10)<br>Y                                                                                                                                                                                                                                                 | Ysx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ysx(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | β                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                            | 0.97856                                                                                                                                                                          |                                                                                                                                                                                                                                                                                | 0.0184                                                                                                                                                                                                                         | 0.98160                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                             | -1.9884                                                                                                                                                                                                                                                           | -1.91041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                     |
| 5                                                                                                                                                                                                            | 0.97521                                                                                                                                                                          |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   | -1.83611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                     |
| 10                                                                                                                                                                                                           | 0.97303                                                                                                                                                                          | 0.97303                                                                                                                                                                                                                                                                        | 0.00438                                                                                                                                                                                                                        | 0.99562                                                                                                                                                                                                                                                                                       | 0.97684                                                                                                                                                                                                     | -1.87085                                                                                                                                                                                                                                                          | -1.7928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.79284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00000                                                                                                                                                             |
| 15                                                                                                                                                                                                           | 0.97119                                                                                                                                                                          | 0.94500                                                                                                                                                                                                                                                                        | 0.00675                                                                                                                                                                                                                        | 0.99325                                                                                                                                                                                                                                                                                       | 0.97024                                                                                                                                                                                                     | -1.74226                                                                                                                                                                                                                                                          | -1.7589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.42190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.50390                                                                                                                                                             |
| 20                                                                                                                                                                                                           | 0.96758                                                                                                                                                                          | 0.94148                                                                                                                                                                                                                                                                        | 0.00993                                                                                                                                                                                                                        | 0.99007                                                                                                                                                                                                                                                                                       | 0.96713                                                                                                                                                                                                     | -1.69095                                                                                                                                                                                                                                                          | -1.6980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.38908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.57059                                                                                                                                                             |
| 25                                                                                                                                                                                                           | 0.96261                                                                                                                                                                          | 0.93665                                                                                                                                                                                                                                                                        | 0.00980                                                                                                                                                                                                                        | 0.99020                                                                                                                                                                                                                                                                                       | 0.96726                                                                                                                                                                                                     | -1.69301                                                                                                                                                                                                                                                          | -1.6241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.34680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.52413                                                                                                                                                             |
| 30                                                                                                                                                                                                           | 0.95773                                                                                                                                                                          | 0.93190                                                                                                                                                                                                                                                                        | 0.01233                                                                                                                                                                                                                        | 0.98767                                                                                                                                                                                                                                                                                       | 0.96479                                                                                                                                                                                                     | -1.65525                                                                                                                                                                                                                                                          | -1.5602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.30812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.55316                                                                                                                                                             |
| 35                                                                                                                                                                                                           | 0.95227                                                                                                                                                                          | 0.92659                                                                                                                                                                                                                                                                        | 0.01652                                                                                                                                                                                                                        | 0.98348                                                                                                                                                                                                                                                                                       | 0.96070                                                                                                                                                                                                     | -1.59820                                                                                                                                                                                                                                                          | -1.4966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.26771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.60714                                                                                                                                                             |
| 40                                                                                                                                                                                                           | 0.94512                                                                                                                                                                          | 0.91963                                                                                                                                                                                                                                                                        | 0.02580                                                                                                                                                                                                                        | 0.97420                                                                                                                                                                                                                                                                                       | 0.95163                                                                                                                                                                                                     | -1.48965                                                                                                                                                                                                                                                          | -1.4231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.21867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.72103                                                                                                                                                             |
| 45                                                                                                                                                                                                           | 0.93416                                                                                                                                                                          | 0.90897                                                                                                                                                                                                                                                                        | 0.03839                                                                                                                                                                                                                        | 0.96161                                                                                                                                                                                                                                                                                       | 0.93933                                                                                                                                                                                                     | -1.36990                                                                                                                                                                                                                                                          | -1.3262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.15054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.81397                                                                                                                                                             |
| 50                                                                                                                                                                                                           | 0.91556                                                                                                                                                                          | 0.89087                                                                                                                                                                                                                                                                        | 0.06507                                                                                                                                                                                                                        | 0.93493                                                                                                                                                                                                                                                                                       | 0.91327                                                                                                                                                                                                     | -1.17711                                                                                                                                                                                                                                                          | -1.1917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.04982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.94273                                                                                                                                                             |
| 55                                                                                                                                                                                                           | 0.88503                                                                                                                                                                          | 0.86116                                                                                                                                                                                                                                                                        | 0.09783                                                                                                                                                                                                                        | 0.90217                                                                                                                                                                                                                                                                                       | 0.88127                                                                                                                                                                                                     | -1.00226                                                                                                                                                                                                                                                          | -1.0205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.91248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.98820                                                                                                                                                             |
| 60                                                                                                                                                                                                           | 0.83508                                                                                                                                                                          | 0.81256                                                                                                                                                                                                                                                                        | 0.16501                                                                                                                                                                                                                        | 0.83499                                                                                                                                                                                                                                                                                       | 0.81565                                                                                                                                                                                                     | -0.74356                                                                                                                                                                                                                                                          | -0.8110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.73336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.05760                                                                                                                                                             |
| 65                                                                                                                                                                                                           | 0.75995                                                                                                                                                                          | 0.73945                                                                                                                                                                                                                                                                        | 0.19474                                                                                                                                                                                                                        | 0.80526                                                                                                                                                                                                                                                                                       | 0.78661                                                                                                                                                                                                     | -0.65230                                                                                                                                                                                                                                                          | -0.5762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.52157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.96203                                                                                                                                                             |
| 70                                                                                                                                                                                                           | 0.65154                                                                                                                                                                          | 0.63397                                                                                                                                                                                                                                                                        | 0.30632                                                                                                                                                                                                                        | 0.69368                                                                                                                                                                                                                                                                                       | 0.67761                                                                                                                                                                                                     | -0.37141                                                                                                                                                                                                                                                          | -0.3129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.27464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.98853                                                                                                                                                             |
| 75                                                                                                                                                                                                           | 0.50591                                                                                                                                                                          | 0.49227                                                                                                                                                                                                                                                                        | 0.35412                                                                                                                                                                                                                        | 0.64588                                                                                                                                                                                                                                                                                       | 0.63092                                                                                                                                                                                                     | -0.26807                                                                                                                                                                                                                                                          | -0.0118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.89328                                                                                                                                                             |
| 80                                                                                                                                                                                                           | 0.33422                                                                                                                                                                          | 0.32521                                                                                                                                                                                                                                                                        | 1.00000                                                                                                                                                                                                                        | 0.00000                                                                                                                                                                                                                                                                                       | 0.00000                                                                                                                                                                                                     | #DIV/0!                                                                                                                                                                                                                                                           | 0.3446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.36497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |
|                                                                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.1263                                                                                                                                                             |
|                                                                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.794735                                                                                                                                                            |
|                                                                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                     |
| 11                                                                                                                                                                                                           | 12                                                                                                                                                                               | 13                                                                                                                                                                                                                                                                             | 14                                                                                                                                                                                                                             | 15                                                                                                                                                                                                                                                                                            | 16                                                                                                                                                                                                          | 17                                                                                                                                                                                                                                                                | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                  |
| 11<br>Y^(2)                                                                                                                                                                                                  | 12<br>P^(2)                                                                                                                                                                      | 13<br>P^(2)                                                                                                                                                                                                                                                                    | 14<br>Logit P <sup>^</sup> (2)                                                                                                                                                                                                 | 15<br>β2                                                                                                                                                                                                                                                                                      | 16<br>Y^(3)                                                                                                                                                                                                 | 17<br>P^(3)                                                                                                                                                                                                                                                       | 18<br>P^(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19<br>Logit P^(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20<br>β3                                                                                                                                                            |
| 11<br>Y^(2)                                                                                                                                                                                                  | 12<br>P^(2)                                                                                                                                                                      | 13<br>P^(2)                                                                                                                                                                                                                                                                    | 14<br>Logit P^(2)                                                                                                                                                                                                              | 15<br>β2                                                                                                                                                                                                                                                                                      | 16<br>Y^(3)                                                                                                                                                                                                 | 17<br>P^(3)                                                                                                                                                                                                                                                       | 18<br>P^(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19<br>Logit P^(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20<br>β3                                                                                                                                                            |
| 11<br>Y^(2)                                                                                                                                                                                                  | 12<br>P^(2)                                                                                                                                                                      | 13<br>P^(2)                                                                                                                                                                                                                                                                    | 14<br>Logit P^(2)                                                                                                                                                                                                              | 15<br>β2                                                                                                                                                                                                                                                                                      | 16<br>Y^(3)                                                                                                                                                                                                 | 17<br>P^(3)                                                                                                                                                                                                                                                       | 18<br>P^(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19<br>Logit P^(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20<br>β3                                                                                                                                                            |
| 11<br>Y^(2)<br>-1.89498                                                                                                                                                                                      | 12<br>P^(2)<br>0.97790                                                                                                                                                           | 13<br>P^(2)<br>0.97790                                                                                                                                                                                                                                                         | 14<br>Logit P^(2)<br>-1.89498                                                                                                                                                                                                  | 15<br>β2<br>0.79473                                                                                                                                                                                                                                                                           | 16<br>Y^(3)<br>-1.88653                                                                                                                                                                                     | 17<br>P^(3)<br>0.97753                                                                                                                                                                                                                                            | 18<br>P^(3)<br>0.97753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19<br>Logit P^(3)<br>-1.88653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20<br>β3<br>0.86666                                                                                                                                                 |
| 11<br>Y^(2)<br>-1.89498<br>-1.86800                                                                                                                                                                          | 12<br>P^(2)<br>0.97790<br>0.97671                                                                                                                                                | 13<br>P^(2)<br>0.97790<br>0.95512                                                                                                                                                                                                                                              | 14<br>Logit P^(2)<br>-1.89498<br>-1.52897                                                                                                                                                                                      | 15<br>β2<br>0.79473<br>0.94050                                                                                                                                                                                                                                                                | 16<br>Y^(3)<br>-1.88653<br>-1.85711                                                                                                                                                                         | 17<br>P^(3)<br>0.97753<br>0.97621                                                                                                                                                                                                                                 | 18<br>P^(3)<br>0.97753<br>0.95427                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19<br>Logit P^(3)<br>-1.88653<br>-1.51915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20<br>β3<br>0.86666<br>0.96061                                                                                                                                      |
| 11<br>Y^(2)<br>-1.89498<br>-1.86800<br>-1.81961                                                                                                                                                              | 12<br>P^(2)<br>0.97790<br>0.97671<br>0.97440                                                                                                                                     | 13<br>P^(2)<br>0.97790<br>0.95512<br>0.95287                                                                                                                                                                                                                                   | 14<br>Logit P^(2)<br>-1.89498<br>-1.52897<br>-1.50327                                                                                                                                                                          | 15<br>β2<br>0.79473<br>0.94050<br>0.93060                                                                                                                                                                                                                                                     | 16<br>Y^(3)<br>-1.88653<br>-1.85711<br>-1.80434                                                                                                                                                             | 17<br>P^(3)<br>0.97753<br>0.97621<br>0.97363                                                                                                                                                                                                                      | 18<br>P^(3)<br>0.97753<br>0.95427<br>0.95175                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19<br>Logit P^(3)<br>-1.88653<br>-1.51915<br>-1.49099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>β3<br>0.86666<br>0.96061<br>0.95414                                                                                                                           |
| 11<br>Y^(2)<br>-1.89498<br>-1.86800<br>-1.81961<br>-1.76089                                                                                                                                                  | 12<br>P^(2)<br>0.97790<br>0.97671<br>0.97440<br>0.97130                                                                                                                          | 13<br>P^(2)<br>0.97790<br>0.95512<br>0.95287<br>0.94984                                                                                                                                                                                                                        | 14<br>Logit P^(2)<br>-1.89498<br>-1.52897<br>-1.50327<br>-1.47052                                                                                                                                                              | 15<br>β2<br>0.79473<br>0.94050<br>0.93060<br>0.91889                                                                                                                                                                                                                                          | 16<br>Y^(3)<br>-1.88653<br>-1.85711<br>-1.80434<br>-1.74030                                                                                                                                                 | 17<br>P^(3)<br>0.97753<br>0.97621<br>0.97363<br>0.97013                                                                                                                                                                                                           | 18<br>P^(3)<br>0.97753<br>0.95427<br>0.95175<br>0.94834                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19<br>Logit P^(3)<br>-1.88653<br>-1.51915<br>-1.49099<br>-1.45498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20<br>β3<br>0.86666<br>0.96061<br>0.95414<br>0.94647                                                                                                                |
| 11<br>Y^(2)<br>-1.89498<br>-1.86800<br>-1.81961<br>-1.76089<br>-1.71013                                                                                                                                      | 12<br>P^(2)<br>0.97790<br>0.97671<br>0.97440<br>0.97130<br>0.96833                                                                                                               | 13<br>P^(2)<br>0.97790<br>0.95512<br>0.95287<br>0.94984<br>0.94693                                                                                                                                                                                                             | 14<br>Logit P^(2)<br>-1.89498<br>-1.52897<br>-1.50327<br>-1.47052<br>-1.44085                                                                                                                                                  | 15<br>β2<br>0.79473<br>0.94050<br>0.93060<br>0.91889<br>0.90915                                                                                                                                                                                                                               | 16<br>Y^(3)<br>-1.88653<br>-1.85711<br>-1.80434<br>-1.74030<br>-1.68494                                                                                                                                     | 17<br>P^(3)<br>0.97753<br>0.97621<br>0.97363<br>0.97013<br>0.96675                                                                                                                                                                                                | 18<br>P^(3)<br>0.97753<br>0.95427<br>0.95175<br>0.94834<br>0.94503                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19<br>Logit P^(3)<br>-1.88653<br>-1.51915<br>-1.49099<br>-1.45498<br>-1.42223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20<br>β3<br>0.86666<br>0.96061<br>0.95414<br>0.94647<br>0.94007                                                                                                     |
| 11<br>Y^(2)<br>-1.89498<br>-1.86800<br>-1.81961<br>-1.76089<br>-1.71013<br>-1.65958                                                                                                                          | 12<br>P^(2)<br>0.97790<br>0.97671<br>0.97440<br>0.97130<br>0.96833<br>0.96508                                                                                                    | 13<br>P^(2)<br>0.97790<br>0.95512<br>0.95287<br>0.94984<br>0.94693<br>0.94375                                                                                                                                                                                                  | 14<br>Logit P^(2)<br>-1.89498<br>-1.52897<br>-1.50327<br>-1.47052<br>-1.44085<br>-1.44007                                                                                                                                      | 15           β2           0.79473           0.94050           0.93060           0.91889           0.90915           0.89986                                                                                                                                                                   | 16<br>Y^(3)<br>-1.88653<br>-1.85711<br>-1.80434<br>-1.74030<br>-1.68494<br>-1.62982                                                                                                                         | 17<br>P^(3)<br>0.97753<br>0.97621<br>0.97363<br>0.97013<br>0.96675<br>0.96302                                                                                                                                                                                     | 18<br>P^(3)<br>0.97753<br>0.95427<br>0.95175<br>0.94834<br>0.94503<br>0.94138                                                                                                                                                                                                                                                                                                                                                                                                                          | 19<br>Logit P^(3)<br>-1.88653<br>-1.51915<br>-1.49099<br>-1.45498<br>-1.42223<br>-1.38816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20<br>β3<br>0.866666<br>0.96061<br>0.95414<br>0.94647<br>0.94007<br>0.93394                                                                                         |
| 11<br>Y^(2)<br>-1.89498<br>-1.86800<br>-1.81961<br>-1.76089<br>-1.71013<br>-1.65958<br>-1.60112                                                                                                              | 12<br>P^(2)<br>0.97790<br>0.97671<br>0.97440<br>0.97130<br>0.96833<br>0.96508<br>0.96092                                                                                         | 13<br>P^(2)<br>0.97790<br>0.95512<br>0.95287<br>0.94984<br>0.94693<br>0.94375<br>0.93968                                                                                                                                                                                       | 14<br>Logit P^(2)<br>-1.89498<br>-1.52897<br>-1.50327<br>-1.47052<br>-1.44085<br>-1.41007<br>-1.37298                                                                                                                          | 15           β2           0.79473           0.94050           0.93060           0.91889           0.90915           0.89986           0.88969                                                                                                                                                 | 16<br>Y^(3)<br>-1.88653<br>-1.85711<br>-1.80434<br>-1.74030<br>-1.68494<br>-1.62982<br>-1.56607                                                                                                             | 17<br>P^(3)<br>0.97753<br>0.97621<br>0.97363<br>0.97013<br>0.96675<br>0.96302<br>0.95820                                                                                                                                                                          | 18<br>P^(3)<br>0.97753<br>0.95427<br>0.95175<br>0.94834<br>0.94503<br>0.94138<br>0.93667                                                                                                                                                                                                                                                                                                                                                                                                               | 19<br>Logit P^(3)<br>-1.88653<br>-1.51915<br>-1.49099<br>-1.45498<br>-1.42223<br>-1.38816<br>-1.34701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>β3<br>0.86666<br>0.96061<br>0.95414<br>0.94647<br>0.94007<br>0.93394<br>0.92723                                                                               |
| 11<br>Y^(2)<br>-1.89498<br>-1.86800<br>-1.81961<br>-1.76089<br>-1.71013<br>-1.65958<br>-1.60112<br>-1.52413                                                                                                  | 12<br>P^(2)<br>0.97790<br>0.97671<br>0.97440<br>0.97130<br>0.96833<br>0.96508<br>0.96092<br>0.95471                                                                              | 13<br>P^(2)<br>0.97790<br>0.95512<br>0.95287<br>0.94984<br>0.94693<br>0.94375<br>0.93968<br>0.93361                                                                                                                                                                            | 14<br>Logit P^(2)<br>-1.89498<br>-1.52897<br>-1.50327<br>-1.47052<br>-1.47052<br>-1.44085<br>-1.41007<br>-1.37298<br>-1.32177                                                                                                  | 15           β2           0.79473           0.94050           0.93060           0.91889           0.90915           0.89986           0.88969           0.87731                                                                                                                               | 16<br>Y^(3)<br>-1.88653<br>-1.85711<br>-1.80434<br>-1.74030<br>-1.68494<br>-1.62982<br>-1.56607<br>-1.48211                                                                                                 | 17<br>P^(3)<br>0.97753<br>0.97621<br>0.97363<br>0.97013<br>0.96675<br>0.96302<br>0.95820<br>0.95093                                                                                                                                                               | 18<br>P^(3)<br>0.97753<br>0.95427<br>0.95175<br>0.94834<br>0.94503<br>0.94138<br>0.93667<br>0.92957                                                                                                                                                                                                                                                                                                                                                                                                    | 19<br>Logit P^(3)<br>-1.88653<br>-1.51915<br>-1.49099<br>-1.45498<br>-1.42223<br>-1.38816<br>-1.34701<br>-1.29004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20<br>β3<br>0.866666<br>0.96061<br>0.95414<br>0.94647<br>0.94607<br>0.93394<br>0.92723<br>0.91907                                                                   |
| 11<br>Y^(2)<br>-1.89498<br>-1.86800<br>-1.81961<br>-1.76089<br>-1.71013<br>-1.65958<br>-1.60112<br>-1.52413<br>-1.41727                                                                                      | 12<br>P^(2)<br>0.97790<br>0.97671<br>0.97440<br>0.97130<br>0.96833<br>0.96508<br>0.96092<br>0.95471<br>0.94451                                                                   | 13<br>P^(2)<br>0.97790<br>0.95512<br>0.95287<br>0.94984<br>0.94693<br>0.94375<br>0.93968<br>0.93361<br>0.92364                                                                                                                                                                 | 14<br>Logit P^(2)<br>-1.89498<br>-1.52897<br>-1.50327<br>-1.47052<br>-1.47052<br>-1.44085<br>-1.41007<br>-1.37298<br>-1.32177<br>-1.24645                                                                                      | 15           β2           0.79473           0.94050           0.93060           0.91889           0.90915           0.88986           0.88969           0.87731           0.86215                                                                                                             | 16<br>Y^(3)<br>-1.88653<br>-1.85711<br>-1.80434<br>-1.74030<br>-1.68494<br>-1.62982<br>-1.56607<br>-1.48211<br>-1.36558                                                                                     | 17<br>P^(3)<br>0.97753<br>0.97621<br>0.97363<br>0.97013<br>0.96675<br>0.96675<br>0.96302<br>0.95820<br>0.95820<br>0.95093<br>0.93884                                                                                                                              | 18           P^(3)           0.97753           0.95427           0.95175           0.94834           0.94503           0.94138           0.93667           0.92957           0.91775                                                                                                                                                                                                                                                                                                                   | 19<br>Logit P^(3)<br>-1.88653<br>-1.51915<br>-1.49099<br>-1.45498<br>-1.42223<br>-1.38816<br>-1.38816<br>-1.34701<br>-1.29004<br>-1.20607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20<br>β3<br>0.866666<br>0.96061<br>0.95414<br>0.94647<br>0.94007<br>0.93394<br>0.92723<br>0.91907<br>0.90907                                                        |
| 11<br>Y^(2)<br>-1.89498<br>-1.86800<br>-1.81961<br>-1.76089<br>-1.71013<br>-1.65958<br>-1.60112<br>-1.52413<br>-1.41727<br>-1.28115                                                                          | 12<br>P^(2)<br>0.97790<br>0.97671<br>0.97440<br>0.97130<br>0.96833<br>0.96508<br>0.96092<br>0.95471<br>0.94451<br>0.92840                                                        | 13           P^(2)           0.97790           0.95512           0.95287           0.94693           0.94693           0.94375           0.93968           0.92364           0.92364           0.90788                                                                         | 14<br>Logit P^(2)<br>-1.89498<br>-1.52897<br>-1.50327<br>-1.47052<br>-1.44085<br>-1.44085<br>-1.41007<br>-1.37298<br>-1.32177<br>-1.24645<br>-1.14402                                                                          | 15           β2           0.79473           0.94050           0.93060           0.91889           0.90915           0.89986           0.88969           0.87731           0.86215           0.84615                                                                                           | 16<br>Y^(3)<br>-1.88653<br>-1.85711<br>-1.80434<br>-1.74030<br>-1.68494<br>-1.62982<br>-1.62982<br>-1.56607<br>-1.48211<br>-1.36558<br>-1.21714                                                             | 17<br>P^(3)<br>0.97753<br>0.97621<br>0.97363<br>0.97013<br>0.96675<br>0.96302<br>0.95820<br>0.95820<br>0.95093<br>0.93884<br>0.91940                                                                                                                              | 18           P^(3)           0.97753           0.95427           0.95175           0.94834           0.94503           0.94138           0.93667           0.92957           0.91775           0.89875                                                                                                                                                                                                                                                                                                 | 19<br>Logit P^(3)<br>-1.88653<br>-1.51915<br>-1.49099<br>-1.45498<br>-1.42223<br>-1.38816<br>-1.38816<br>-1.34701<br>-1.29004<br>-1.29004<br>-1.20607<br>-1.0917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20<br>β3<br>0.86666<br>0.96061<br>0.95414<br>0.94647<br>0.94607<br>0.94007<br>0.93394<br>0.92723<br>0.91907<br>0.90907<br>0.89857                                   |
| 11<br>Y^(2)<br>-1.89498<br>-1.86800<br>-1.81961<br>-1.76089<br>-1.71013<br>-1.65958<br>-1.60112<br>-1.52413<br>-1.41727<br>-1.28115<br>-1.11470                                                              | 12<br>P^(2)<br>0.97790<br>0.97671<br>0.97440<br>0.97130<br>0.96833<br>0.96508<br>0.96692<br>0.95471<br>0.92840<br>0.92840<br>0.90286                                             | 13<br>P^(2)<br>0.97790<br>0.95512<br>0.95287<br>0.94984<br>0.94693<br>0.94375<br>0.93968<br>0.93361<br>0.92364<br>0.90788<br>0.88291                                                                                                                                           | 14<br>Logit P^(2)<br>-1.89498<br>-1.52897<br>-1.50327<br>-1.47052<br>-1.47052<br>-1.44085<br>-1.41007<br>-1.37298<br>-1.32177<br>-1.24645<br>-1.14402<br>-1.01013                                                              | 15           β2           0.79473           0.94050           0.93060           0.91889           0.90915           0.88969           0.887731           0.86215           0.84615           0.83113                                                                                          | 16<br>Y^(3)<br>-1.88653<br>-1.85711<br>-1.80434<br>-1.74030<br>-1.68494<br>-1.62982<br>-1.62982<br>-1.56607<br>-1.48211<br>-1.36558<br>-1.21714<br>-1.03563                                                 | 17<br>P^(3)<br>0.97753<br>0.97621<br>0.97363<br>0.97013<br>0.96675<br>0.96675<br>0.96302<br>0.95820<br>0.95820<br>0.95820<br>0.95820<br>0.95884<br>0.91940<br>0.88808                                                                                             | 18           P^(3)           0.97753           0.95427           0.95175           0.94834           0.94503           0.944503           0.93667           0.92957           0.91775           0.89875           0.86813                                                                                                                                                                                                                                                                              | 19         Logit P^(3)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <tr< th=""><th>20<br/>β3<br/>0.86666<br/>0.96061<br/>0.95414<br/>0.94647<br/>0.94007<br/>0.93394<br/>0.92723<br/>0.91907<br/>0.90907<br/>0.89857<br/>0.88880</th></tr<>                          | 20<br>β3<br>0.86666<br>0.96061<br>0.95414<br>0.94647<br>0.94007<br>0.93394<br>0.92723<br>0.91907<br>0.90907<br>0.89857<br>0.88880                                   |
| 11<br>Y^(2)<br>-1.89498<br>-1.86800<br>-1.81961<br>-1.76089<br>-1.71013<br>-1.65958<br>-1.60112<br>-1.52413<br>-1.41727<br>-1.28115<br>-1.11470<br>-0.92807                                                  | 12<br>P^(2)<br>0.97790<br>0.97671<br>0.97440<br>0.97130<br>0.96833<br>0.96508<br>0.96092<br>0.95471<br>0.94451<br>0.92840<br>0.90286<br>0.86485                                  | 13           P^(2)           0.97790           0.95512           0.95287           0.94693           0.94693           0.93361           0.92364           0.907788           0.88291           0.84574                                                                        | 14<br>Logit P^(2)<br>-1.89498<br>-1.52897<br>-1.50327<br>-1.47052<br>-1.47052<br>-1.44085<br>-1.41007<br>-1.37298<br>-1.32177<br>-1.24645<br>-1.124645<br>-1.14402<br>-1.01013<br>-0.85077                                     | 15           β2           0.79473           0.94050           0.93060           0.93060           0.91889           0.90915           0.89986           0.88969           0.87731           0.86215           0.84615           0.83113           0.81913                                     | 16<br>Y^(3)<br>-1.88653<br>-1.85711<br>-1.80434<br>-1.74030<br>-1.68494<br>-1.62982<br>-1.56607<br>-1.48211<br>-1.36558<br>-1.21714<br>-1.03563<br>-0.83211                                                 | 17<br>P^(3)<br>0.97753<br>0.97621<br>0.97363<br>0.97013<br>0.96675<br>0.96302<br>0.95820<br>0.95820<br>0.95093<br>0.93884<br>0.91940<br>0.88808<br>0.84080                                                                                                        | 18           P^(3)           0.97753           0.95427           0.95175           0.94834           0.94503           0.94138           0.93667           0.92957           0.91775           0.80875           0.86813           0.82191                                                                                                                                                                                                                                                             | 19<br>Logit P^(3)<br>-1.88653<br>-1.51915<br>-1.49099<br>-1.45498<br>-1.42223<br>-1.38816<br>-1.34701<br>-1.29004<br>-1.29004<br>-1.20607<br>-1.0917<br>-0.94225<br>-0.76468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20<br>β3<br>0.866666<br>0.96061<br>0.95414<br>0.94647<br>0.94647<br>0.94007<br>0.93394<br>0.92723<br>0.91907<br>0.90907<br>0.89857<br>0.88880<br>0.88112            |
| 11<br>Y <sup>^</sup> (2)<br>-1.89498<br>-1.86800<br>-1.81961<br>-1.76089<br>-1.71013<br>-1.65958<br>-1.60112<br>-1.52413<br>-1.41727<br>-1.28115<br>-1.11470<br>-0.92807<br>-0.71882                         | 12<br>P^(2)<br>0.97790<br>0.97671<br>0.97440<br>0.97130<br>0.96833<br>0.96508<br>0.96092<br>0.95471<br>0.92840<br>0.92840<br>0.90286<br>0.80809                                  | 13<br>P^(2)<br>0.97790<br>0.95512<br>0.95287<br>0.94984<br>0.94693<br>0.94693<br>0.94375<br>0.93968<br>0.93361<br>0.92364<br>0.90788<br>0.88291<br>0.84574<br>0.79023                                                                                                          | 14<br>Logit P^(2)<br>-1.89498<br>-1.52897<br>-1.50327<br>-1.47052<br>-1.47052<br>-1.44085<br>-1.41007<br>-1.37298<br>-1.32177<br>-1.24645<br>-1.14402<br>-1.01013<br>-0.85077<br>-0.66317                                      | 15           β2           0.79473           0.94050           0.93060           0.91889           0.90915           0.89986           0.88969           0.887731           0.86215           0.84615           0.8113           0.81913           0.81017                                     | 16<br>Y^(3)<br>-1.88653<br>-1.85711<br>-1.80434<br>-1.74030<br>-1.68494<br>-1.62982<br>-1.62982<br>-1.56607<br>-1.48211<br>-1.36558<br>-1.21714<br>-1.03563<br>-0.83211<br>-0.60392                         | 17<br>P^(3)<br>0.97753<br>0.97621<br>0.97363<br>0.97013<br>0.96675<br>0.96675<br>0.96302<br>0.95820<br>0.95820<br>0.95820<br>0.95933<br>0.93884<br>0.91940<br>0.88808<br>0.84080<br>0.76992                                                                       | 18           P^(3)           0.97753           0.95427           0.95175           0.94834           0.94503           0.94503           0.94503           0.92957           0.91775           0.89875           0.86813           0.82191           0.75262                                                                                                                                                                                                                                           | 19         Logit P^(3)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <tr< th=""><th>20<br/>β3<br/>0.866666<br/>0.96061<br/>0.95414<br/>0.94647<br/>0.94007<br/>0.93394<br/>0.92723<br/>0.91907<br/>0.90907<br/>0.89857<br/>0.88880<br/>0.88112<br/>0.87549</th></tr<> | 20<br>β3<br>0.866666<br>0.96061<br>0.95414<br>0.94647<br>0.94007<br>0.93394<br>0.92723<br>0.91907<br>0.90907<br>0.89857<br>0.88880<br>0.88112<br>0.87549            |
| 11<br>Y^(2)<br>-1.89498<br>-1.86800<br>-1.81961<br>-1.76089<br>-1.71013<br>-1.65958<br>-1.60112<br>-1.52413<br>-1.41727<br>-1.28115<br>-1.11470<br>-0.92807<br>-0.71882<br>-0.47954                          | 12<br>P^(2)<br>0.97790<br>0.97671<br>0.97440<br>0.97440<br>0.97130<br>0.96833<br>0.96508<br>0.96092<br>0.95471<br>0.94451<br>0.92840<br>0.90286<br>0.80485<br>0.80809<br>0.72294 | 13           P^(2)           0.97790           0.95512           0.95287           0.94693           0.94693           0.93361           0.92364           0.907788           0.88291           0.84574           0.79023           0.70696                                    | 14<br>Logit P^(2)<br>-1.89498<br>-1.52897<br>-1.50327<br>-1.50327<br>-1.47052<br>-1.47052<br>-1.44085<br>-1.41007<br>-1.37298<br>-1.32177<br>-1.24645<br>-1.124645<br>-1.14402<br>-1.01013<br>-0.85077<br>-0.66317<br>-0.44034 | 15           β2           0.79473           0.94050           0.93060           0.93060           0.91889           0.90915           0.89986           0.88969           0.87731           0.86215           0.84615           0.81113           0.81913           0.81017           0.80383 | 16<br>Y^(3)<br>-1.88653<br>-1.85711<br>-1.80434<br>-1.74030<br>-1.68494<br>-1.62982<br>-1.56607<br>-1.48211<br>-1.36558<br>-1.21714<br>-1.03563<br>-0.83211<br>-0.60392<br>-0.34298                         | 17<br>P^(3)<br>0.97753<br>0.97621<br>0.97363<br>0.97013<br>0.96675<br>0.96302<br>0.95820<br>0.95820<br>0.95093<br>0.93884<br>0.91940<br>0.88808<br>0.84080<br>0.76992<br>0.66507                                                                                  | 18           P^(3)           0.97753           0.95427           0.95175           0.94834           0.94503           0.94503           0.94138           0.93667           0.92957           0.91775           0.80875           0.86813           0.82191           0.75262           0.65013                                                                                                                                                                                                       | 19           Logit P^(3)           -1.88653           -1.51915           -1.51915           -1.45498           -1.45498           -1.45498           -1.38816           -1.38816           -1.34701           -1.29004           -1.20607           -0.94225           -0.76468           -0.55632           -0.3098                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20<br>β3<br>0.866666<br>0.96061<br>0.95414<br>0.94647<br>0.94007<br>0.93394<br>0.92723<br>0.91907<br>0.90907<br>0.89857<br>0.88880<br>0.88112<br>0.87549<br>0.87161 |
| 11<br>Y <sup>^</sup> (2)<br>-1.89498<br>-1.86800<br>-1.81961<br>-1.76089<br>-1.71013<br>-1.65958<br>-1.60112<br>-1.52413<br>-1.41727<br>-1.28115<br>-1.11470<br>-0.92807<br>-0.71882<br>-0.47954<br>-0.19630 | 12<br>P^(2)<br>0.97790<br>0.97671<br>0.97440<br>0.97130<br>0.96833<br>0.96508<br>0.96508<br>0.96092<br>0.95471<br>0.92840<br>0.92840<br>0.90286<br>0.80809<br>0.72294<br>0.59691 | 13           P^(2)           0.97790           0.95512           0.95512           0.95287           0.94984           0.94693           0.94375           0.93361           0.92364           0.90788           0.88291           0.84574           0.70696           0.58372 | 14<br>Logit P^(2)<br>-1.89498<br>-1.52897<br>-1.50327<br>-1.47052<br>-1.47052<br>-1.44085<br>-1.41007<br>-1.37298<br>-1.32177<br>-1.24645<br>-1.14402<br>-1.01013<br>-0.85077<br>-0.66317<br>-0.66317<br>-0.44034<br>-0.16903  | 15         β2         0.79473         0.94050         0.93060         0.91889         0.90915         0.88969         0.887731         0.86215         0.84615         0.81913         0.81017         0.80383                                                                                | 16<br>Y^(3)<br>-1.88653<br>-1.85711<br>-1.80434<br>-1.74030<br>-1.68494<br>-1.62982<br>-1.62982<br>-1.56607<br>-1.48211<br>-1.36558<br>-1.21714<br>-1.03563<br>-0.83211<br>-0.60392<br>-0.34298<br>-0.03410 | 17         P^(3)         0.97753         0.977621         0.97363         0.97013         0.96675         0.96675         0.95820         0.95820         0.95884         0.91940         0.88808         0.84080         0.76992         0.66507         0.51704 | 18           P^(3)           0.97753           0.95427           0.95175           0.94834           0.94503           0.94503           0.94503           0.94503           0.94503           0.94503           0.94503           0.94503           0.94503           0.94503           0.94503           0.94503           0.94503           0.94503           0.92957           0.91775           0.89875           0.86813           0.82191           0.75262           0.65013           0.50543 | 19           Logit P^(3)           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -   -          -                                                                                                                     | 20<br>β3<br>0.866666<br>0.96061<br>0.95414<br>0.94647<br>0.94007<br>0.93394<br>0.92723<br>0.91907<br>0.90907<br>0.89857<br>0.88880<br>0.88112<br>0.87549<br>0.87161 |

| 0.86666 0.91235 |         |         |
|-----------------|---------|---------|
|                 | 0.86666 | 0.91235 |

| 21                                                                                                                                            | 22                                                                                                                                                         | 23                                                                                                                                                                                                                 | 24                                                                                                                                                                            | 25                                                                                                                                                                                                                             | 26                                                                                                                                                         | 27                                                                                                                                                  | 28                                                                                                                                                                                                                                            | 29                                                                                                                                                              | 30                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Y^(4)                                                                                                                                         | <b>P</b> ^(4)                                                                                                                                              | P^(4)                                                                                                                                                                                                              | Logit P <sup>^</sup> (4)                                                                                                                                                      | β4                                                                                                                                                                                                                             | Y^(5)                                                                                                                                                      | P^(5)                                                                                                                                               | <b>P</b> <sup>^</sup> (5) cond.                                                                                                                                                                                                               | Logit P <sup>^</sup> (5)                                                                                                                                        | β5                                                                                                                                                                                                                             |
|                                                                                                                                               |                                                                                                                                                            |                                                                                                                                                                                                                    |                                                                                                                                                                               |                                                                                                                                                                                                                                |                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                                                                |
|                                                                                                                                               |                                                                                                                                                            |                                                                                                                                                                                                                    |                                                                                                                                                                               |                                                                                                                                                                                                                                |                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                                                                |
| -1.88115                                                                                                                                      | 0.97730                                                                                                                                                    | 0.97730                                                                                                                                                                                                            | -1.88115                                                                                                                                                                      | 0.91235                                                                                                                                                                                                                        | -1.87771                                                                                                                                                   | 0.977144                                                                                                                                            | 0.97714                                                                                                                                                                                                                                       | -1.87771                                                                                                                                                        | 0.94164                                                                                                                                                                                                                        |
| -1.85018                                                                                                                                      | 0.97588                                                                                                                                                    | 0.95373                                                                                                                                                                                                            | -1.5129                                                                                                                                                                       | 0.97338                                                                                                                                                                                                                        | -1.84575                                                                                                                                                   | 0.975672                                                                                                                                            | 0.95337                                                                                                                                                                                                                                       | -1.5089                                                                                                                                                         | 0.98158                                                                                                                                                                                                                        |
| -1.79463                                                                                                                                      | 0.97312                                                                                                                                                    | 0.95103                                                                                                                                                                                                            | -1.48318                                                                                                                                                                      | 0.96913                                                                                                                                                                                                                        | -1.78841                                                                                                                                                   | 0.972796                                                                                                                                            | 0.95056                                                                                                                                                                                                                                       | -1.47817                                                                                                                                                        | 0.97874                                                                                                                                                                                                                        |
| -1.72722                                                                                                                                      | 0.96936                                                                                                                                                    | 0.94736                                                                                                                                                                                                            | -1.44506                                                                                                                                                                      | 0.96406                                                                                                                                                                                                                        | -1.71883                                                                                                                                                   | 0.968861                                                                                                                                            | 0.94672                                                                                                                                                                                                                                       | -1.43869                                                                                                                                                        | 0.97537                                                                                                                                                                                                                        |
| -1.66894                                                                                                                                      | 0.96571                                                                                                                                                    | 0.94378                                                                                                                                                                                                            | -1.41033                                                                                                                                                                      | 0.95982                                                                                                                                                                                                                        | -1.65868                                                                                                                                                   | 0.96502                                                                                                                                             | 0.94296                                                                                                                                                                                                                                       | -1.40267                                                                                                                                                        | 0.97254                                                                                                                                                                                                                        |
| -1.61092                                                                                                                                      | 0.96165                                                                                                                                                    | 0.93982                                                                                                                                                                                                            | -1.37414                                                                                                                                                                      | 0.95577                                                                                                                                                                                                                        | -1.59879                                                                                                                                                   | 0.960743                                                                                                                                            | 0.93878                                                                                                                                                                                                                                       | -1.36509                                                                                                                                                        | 0.96984                                                                                                                                                                                                                        |
| -1.54380                                                                                                                                      | 0.95638                                                                                                                                                    | 0.93467                                                                                                                                                                                                            | -1.33034                                                                                                                                                                      | 0.95133                                                                                                                                                                                                                        | -1.52952                                                                                                                                                   | 0.955172                                                                                                                                            | 0.93334                                                                                                                                                                                                                                       | -1.31958                                                                                                                                                        | 0.96688                                                                                                                                                                                                                        |
| -1.45542                                                                                                                                      | 0.94838                                                                                                                                                    | 0.92685                                                                                                                                                                                                            | -1.26963                                                                                                                                                                      | 0.94592                                                                                                                                                                                                                        | -1.43831                                                                                                                                                   | 0.946678                                                                                                                                            | 0.92504                                                                                                                                                                                                                                       | -1.25645                                                                                                                                                        | 0.96327                                                                                                                                                                                                                        |
| -1.33274                                                                                                                                      | 0.93496                                                                                                                                                    | 0.91373                                                                                                                                                                                                            | -1.18005                                                                                                                                                                      | 0.93931                                                                                                                                                                                                                        | -1.31169                                                                                                                                                   | 0.932351                                                                                                                                            | 0.91104                                                                                                                                                                                                                                       | -1.16321                                                                                                                                                        | 0.95888                                                                                                                                                                                                                        |
| -1.17648                                                                                                                                      | 0.91317                                                                                                                                                    | 0.89244                                                                                                                                                                                                            | -1.05795                                                                                                                                                                      | 0.93240                                                                                                                                                                                                                        | -1.15041                                                                                                                                                   | 0.908945                                                                                                                                            | 0.88817                                                                                                                                                                                                                                       | -1.03609                                                                                                                                                        | 0.95430                                                                                                                                                                                                                        |
| -0.98540                                                                                                                                      | 0.87770                                                                                                                                                    | 0.85777                                                                                                                                                                                                            | -0.89845                                                                                                                                                                      | 0.92601                                                                                                                                                                                                                        | -0.95319                                                                                                                                                   | 0.870613                                                                                                                                            | 0.85071                                                                                                                                                                                                                                       | -0.87011                                                                                                                                                        | 0.95009                                                                                                                                                                                                                        |
| -0.77115                                                                                                                                      | 0.82380                                                                                                                                                    | 0.80510                                                                                                                                                                                                            | -0.70923                                                                                                                                                                      | 0.92104                                                                                                                                                                                                                        | -0.73207                                                                                                                                                   | 0.812164                                                                                                                                            | 0.79360                                                                                                                                                                                                                                       | -0.67338                                                                                                                                                        | 0.94685                                                                                                                                                                                                                        |
| -0.53094                                                                                                                                      | 0.74305                                                                                                                                                    | 0.72618                                                                                                                                                                                                            | -0.48766                                                                                                                                                                      | 0.91746                                                                                                                                                                                                                        | -0.48413                                                                                                                                                   | 0.724775                                                                                                                                            | 0.70821                                                                                                                                                                                                                                       | -0.44335                                                                                                                                                        | 0.94455                                                                                                                                                                                                                        |
| -0.25624                                                                                                                                      | 0.62539                                                                                                                                                    | 0.61119                                                                                                                                                                                                            | -0.22616                                                                                                                                                                      | 0.91504                                                                                                                                                                                                                        | -0.20062                                                                                                                                                   | 0.598985                                                                                                                                            | 0.58529                                                                                                                                                                                                                                       | -0.17227                                                                                                                                                        | 0.94302                                                                                                                                                                                                                        |
| 0.06892                                                                                                                                       | 0.46559                                                                                                                                                    | 0.45502                                                                                                                                                                                                            | 0.090195                                                                                                                                                                      |                                                                                                                                                                                                                                | 0.134985                                                                                                                                                   | 0.432915                                                                                                                                            | 0.42302                                                                                                                                                                                                                                       | 0.155194                                                                                                                                                        |                                                                                                                                                                                                                                |
|                                                                                                                                               |                                                                                                                                                            |                                                                                                                                                                                                                    |                                                                                                                                                                               | 13.18303                                                                                                                                                                                                                       |                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                                                                                                               |                                                                                                                                                                 | 13.44756                                                                                                                                                                                                                       |
|                                                                                                                                               |                                                                                                                                                            |                                                                                                                                                                                                                    |                                                                                                                                                                               | 0.044.64                                                                                                                                                                                                                       |                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                                                                                                               |                                                                                                                                                                 | 0.040.84                                                                                                                                                                                                                       |
|                                                                                                                                               |                                                                                                                                                            |                                                                                                                                                                                                                    |                                                                                                                                                                               | 0.941645                                                                                                                                                                                                                       |                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                                                                                                               |                                                                                                                                                                 | 0.96054                                                                                                                                                                                                                        |
| 31                                                                                                                                            | 32                                                                                                                                                         | 33                                                                                                                                                                                                                 | 34                                                                                                                                                                            | 0.941645<br>35                                                                                                                                                                                                                 | 36                                                                                                                                                         | 37                                                                                                                                                  | 38                                                                                                                                                                                                                                            | 39                                                                                                                                                              | 0.96054<br>40                                                                                                                                                                                                                  |
| 31<br>Y^(6)                                                                                                                                   | 32<br>P^(6)                                                                                                                                                | 33<br>P^(6) cond.                                                                                                                                                                                                  | 34<br>Logit P^(6)                                                                                                                                                             | 0.941645<br>35<br>β6                                                                                                                                                                                                           | 36<br>Y^(7)                                                                                                                                                | 37<br>P^(7)                                                                                                                                         | 38<br>P^(7) cond.                                                                                                                                                                                                                             | 39<br>Logit P^(7)                                                                                                                                               | 0.96054<br>40<br>β7                                                                                                                                                                                                            |
| 31<br>Y^(6)                                                                                                                                   | 32<br>P^(6)                                                                                                                                                | 33<br>P^(6) cond.                                                                                                                                                                                                  | 34<br>Logit P^(6)                                                                                                                                                             | 0.941645<br>35<br>β6                                                                                                                                                                                                           | 36<br>Y^(7)                                                                                                                                                | 37<br>P^(7)                                                                                                                                         | 38<br>P^(7) cond.                                                                                                                                                                                                                             | 39<br>Logit P^(7)                                                                                                                                               | 0.96054<br>40<br>β7                                                                                                                                                                                                            |
| 31<br>Y^(6)                                                                                                                                   | 32<br>P^(6)                                                                                                                                                | 33<br>P^(6) cond.                                                                                                                                                                                                  | 34<br>Logit P^(6)                                                                                                                                                             | 0.941645<br>35<br>β6                                                                                                                                                                                                           | 36<br>Y^(7)                                                                                                                                                | 37<br>P^(7)                                                                                                                                         | 38<br>P^(7) cond.                                                                                                                                                                                                                             | 39<br>Logit P^(7)                                                                                                                                               | 0.96054<br>40<br>β7                                                                                                                                                                                                            |
| 31<br>Y^(6)<br>-1.87549                                                                                                                       | <b>32</b><br><b>P^(6)</b><br>0.97704                                                                                                                       | <b>33</b><br><b>P</b> ^(6) cond.<br>0.97704                                                                                                                                                                        | 34<br>Logit P^(6)<br>-1.87549                                                                                                                                                 | 0.941645<br>35<br>β6<br>0.96054                                                                                                                                                                                                | 36<br>Y^(7)<br>-1.87405                                                                                                                                    | <b>37</b><br><b>P</b> ^(7)<br>0.97698                                                                                                               | <b>38</b><br><b>P</b> ^(7) cond.<br>0.97698                                                                                                                                                                                                   | <b>39</b><br><b>Logit P^(7)</b><br>-1.87405                                                                                                                     | 0.96054<br>40<br>β7<br>0.97277                                                                                                                                                                                                 |
| 31<br>Y^(6)<br>-1.87549<br>-1.84288                                                                                                           | <b>32</b><br><b>P^(6)</b><br>0.97704<br>0.97554                                                                                                            | <b>33</b><br><b>P^(6) cond.</b><br>0.97704<br>0.95314                                                                                                                                                              | 34<br>Logit P^(6)<br>-1.87549<br>-1.50632                                                                                                                                     | 0.941645<br>35<br>β6<br>0.96054<br>0.986866                                                                                                                                                                                    | 36<br>Y^(7)<br>-1.87405<br>-1.84103                                                                                                                        | <b>37</b><br><b>P</b> ^(7)<br>0.97698<br>0.97545                                                                                                    | 38<br>P^(7) cond.<br>0.97698<br>0.952992                                                                                                                                                                                                      | 39<br>Logit P^(7)<br>-1.87405<br>-1.50465                                                                                                                       | 0.96054<br>40<br>β7<br>0.97277<br>0.990288                                                                                                                                                                                     |
| 31<br>Y^(6)<br>-1.87549<br>-1.84288<br>-1.7844                                                                                                | <b>32</b><br><b>P^(6)</b><br>0.97704<br>0.97554<br>0.97258                                                                                                 | <b>33</b><br><b>P^(6) cond.</b><br>0.97704<br>0.95314<br>0.95026                                                                                                                                                   | <b>34</b><br><b>Logit P^(6)</b><br>-1.87549<br>-1.50632<br>-1.47493                                                                                                           | 0.941645           35           β6           0.96054           0.986866           0.984952                                                                                                                                     | <b>36</b><br><b>Y</b> ^(7)<br>-1.87405<br>-1.84103<br>-1.7818                                                                                              | <b>37</b><br><b>P</b> ^( <b>7</b> )<br>0.97698<br>0.97545<br>0.97244                                                                                | 38<br>P^(7) cond.<br>0.97698<br>0.952992<br>0.950059                                                                                                                                                                                          | 39<br>Logit P^(7)<br>-1.87405<br>-1.50465<br>-1.47284                                                                                                           | 0.96054<br>40<br>β7<br>0.97277<br>0.990288<br>0.988972                                                                                                                                                                         |
| 31<br>Y^(6)<br>-1.87549<br>-1.84288<br>-1.7844<br>-1.71342                                                                                    | <b>32</b><br><b>P^(6)</b><br>0.97704<br>0.97554<br>0.97258<br>0.96853                                                                                      | 33<br>P^(6) cond.<br>0.97704<br>0.95314<br>0.95026<br>0.94630                                                                                                                                                      | <b>34</b><br><b>Logit P^(6)</b><br>-1.87549<br>-1.50632<br>-1.47493<br>-1.43457                                                                                               | 0.941645         35         β6         0.96054         0.986866         0.984952         0.982674                                                                                                                              | 36<br>Y^(7)<br>-1.87405<br>-1.84103<br>-1.7818<br>-1.70992                                                                                                 | <b>37</b><br><b>P</b> ^(7)<br>0.97698<br>0.97545<br>0.97244<br>0.96832                                                                              | 38<br>P^(7) cond.<br>0.97698<br>0.952992<br>0.950059<br>0.946028                                                                                                                                                                              | <b>39</b><br><b>Logit P^(7)</b><br>-1.87405<br>-1.50465<br>-1.47284<br>-1.43191                                                                                 | 0.96054         40         β7         0.97277         0.990288         0.988972         0.987406                                                                                                                               |
| 31<br>Y^(6)<br>-1.87549<br>-1.84288<br>-1.7844<br>-1.71342<br>-1.65207                                                                        | 32<br>P^(6)<br>0.97704<br>0.97554<br>0.97258<br>0.96853<br>0.96457                                                                                         | <b>33</b><br><b>P^(6) cond.</b><br>0.97704<br>0.95314<br>0.95026<br>0.94630<br>0.94243                                                                                                                             | 34<br>Logit P^(6)<br>-1.87549<br>-1.50632<br>-1.47493<br>-1.43457<br>-1.39771                                                                                                 | 0.941645         35         β6         0.96054         0.986866         0.984952         0.982674         0.980766                                                                                                             | <b>36</b><br><b>Y</b> ^(7)<br>-1.87405<br>-1.84103<br>-1.7818<br>-1.70992<br>-1.64778                                                                      | <b>37</b><br><b>P</b> ^( <b>7</b> )<br>0.97698<br>0.97545<br>0.97244<br>0.96832<br>0.96428                                                          | 38<br>P^(7) cond.<br>0.97698<br>0.952992<br>0.950059<br>0.946028<br>0.942079                                                                                                                                                                  | <b>39</b><br><b>Logit P^(7)</b><br>-1.87405<br>-1.50465<br>-1.47284<br>-1.43191<br>-1.3945                                                                      | 0.96054           40           β7           0.97277           0.990288           0.988972           0.987406           0.986097                                                                                                |
| 31<br>Y^(6)<br>-1.87549<br>-1.84288<br>-1.7844<br>-1.71342<br>-1.65207<br>-1.59098                                                            | <b>32</b><br><b>P^(6)</b><br>0.97704<br>0.97554<br>0.97258<br>0.96853<br>0.96853<br>0.96457<br>0.96015                                                     | 33<br>P^(6) cond.<br>0.97704<br>0.95314<br>0.95026<br>0.94630<br>0.94243<br>0.93811                                                                                                                                | 34<br>Logit P^(6)<br>-1.87549<br>-1.50632<br>-1.47493<br>-1.43457<br>-1.39771<br>-1.35924                                                                                     | 0.941645         35         β6         0.96054         0.986866         0.984952         0.982674         0.980766         0.978943                                                                                            | 36<br>Y^(7)<br>-1.87405<br>-1.84103<br>-1.7818<br>-1.70992<br>-1.64778<br>-1.58592                                                                         | <b>37</b><br><b>P</b> ^(7)<br>0.97698<br>0.97545<br>0.97244<br>0.96832<br>0.96428<br>0.95976                                                        | 38<br>P^(7) cond.<br>0.97698<br>0.952992<br>0.950059<br>0.946028<br>0.942079<br>0.937667                                                                                                                                                      | 39<br>Logit P^(7)<br>-1.87405<br>-1.50465<br>-1.47284<br>-1.43191<br>-1.3945<br>-1.35545                                                                        | 0.96054         40         β7         0.97277         0.990288         0.988972         0.987406         0.986097         0.984847                                                                                             |
| 31<br>Y^(6)<br>-1.87549<br>-1.84288<br>-1.7844<br>-1.71342<br>-1.65207<br>-1.59098<br>-1.52032                                                | 32<br>P^(6)<br>0.97704<br>0.97554<br>0.97258<br>0.96853<br>0.96457<br>0.96015<br>0.95438                                                                   | <b>33</b><br><b>P^(6) cond.</b><br>0.97704<br>0.95314<br>0.95026<br>0.94630<br>0.94243<br>0.93811<br>0.93247                                                                                                       | 34<br>Logit P^(6)<br>-1.87549<br>-1.50632<br>-1.47493<br>-1.43457<br>-1.39771<br>-1.35924<br>-1.31262                                                                         | 0.941645         35         β6         0.96054         0.986866         0.984952         0.982674         0.980766         0.978943         0.976946                                                                           | <b>36</b><br><b>Y</b> ^(7)<br>-1.87405<br>-1.84103<br>-1.7818<br>-1.70992<br>-1.64778<br>-1.58592<br>-1.51436                                              | <b>37</b><br><b>P</b> ^(7)<br>0.97698<br>0.97545<br>0.97244<br>0.96832<br>0.96428<br>0.95976<br>0.95385                                             | 38<br>P^(7) cond.<br>0.97698<br>0.97698<br>0.952992<br>0.950059<br>0.946028<br>0.942079<br>0.937667<br>0.931897                                                                                                                               | <b>39</b><br><b>Logit P^(7)</b><br>-1.87405<br>-1.50465<br>-1.47284<br>-1.43191<br>-1.3945<br>-1.35545<br>-1.3081                                               | 0.96054           40           β7           0.97277           0.990288           0.988972           0.987406           0.986097           0.984847           0.983479                                                          |
| 31<br>Y^(6)<br>-1.87549<br>-1.84288<br>-1.7844<br>-1.71342<br>-1.65207<br>-1.59098<br>-1.52032<br>-1.42727                                    | <b>32</b><br><b>P^(6)</b><br>0.97704<br>0.97554<br>0.97258<br>0.96853<br>0.96853<br>0.96457<br>0.96015<br>0.95438<br>0.94555                               | 33<br>P^(6) cond.<br>0.97704<br>0.95314<br>0.95026<br>0.94630<br>0.94243<br>0.93811<br>0.93247<br>0.92385                                                                                                          | 34<br>Logit P^(6)<br>-1.87549<br>-1.50632<br>-1.47493<br>-1.43457<br>-1.39771<br>-1.35924<br>-1.31262<br>-1.2479                                                              | 0.941645         35         β6         0.96054         0.986866         0.984952         0.982674         0.980766         0.978943         0.976946         0.974521                                                          | 36<br>Y^(7)<br>-1.87405<br>-1.87405<br>-1.84103<br>-1.7818<br>-1.70992<br>-1.64778<br>-1.58592<br>-1.51436<br>-1.42012                                     | <b>37</b><br><b>P</b> ^(7)<br>0.97698<br>0.97545<br>0.97244<br>0.96832<br>0.96832<br>0.96428<br>0.95976<br>0.95385<br>0.94481                       | 38<br>P^(7) cond.<br>0.97698<br>0.952992<br>0.950059<br>0.946028<br>0.942079<br>0.937667<br>0.931897<br>0.923063                                                                                                                              | 39<br>Logit P^(7)<br>-1.87405<br>-1.50465<br>-1.47284<br>-1.43191<br>-1.3945<br>-1.35545<br>-1.3081<br>-1.24235                                                 | 0.96054           40           β7           0.97277           0.990288           0.988972           0.9887406           0.986097           0.984847           0.983479           0.981822                                      |
| 31<br>Y^(6)<br>-1.87549<br>-1.87549<br>-1.84288<br>-1.7844<br>-1.71342<br>-1.65207<br>-1.59098<br>-1.52032<br>-1.42727<br>-1.29811            | 32<br>P^(6)<br>0.97704<br>0.97554<br>0.97258<br>0.96853<br>0.96457<br>0.96015<br>0.95438<br>0.94555<br>0.93062                                             | 33         P^(6) cond.         0.9         0.97704         0.95314         0.95026         0.94630         0.94243         0.93811         0.93247         0.92385         0.90926                                 | 34<br>Logit P <sup>^</sup> (6)<br>-1.87549<br>-1.50632<br>-1.47493<br>-1.43457<br>-1.39771<br>-1.35924<br>-1.31262<br>-1.2479<br>-1.15229                                     | 0.941645           35           β6           0.96054           0.986866           0.982674           0.980766           0.978943           0.976946           0.97157                                                          | <b>36</b><br><b>Y</b> ^(7)<br>-1.87405<br>-1.87405<br>-1.84103<br>-1.7818<br>-1.70992<br>-1.64778<br>-1.58592<br>-1.51436<br>-1.42012<br>-1.28932          | <b>37</b><br><b>P</b> ^(7)<br>0.97698<br>0.97545<br>0.97244<br>0.96832<br>0.96428<br>0.95976<br>0.95385<br>0.94481<br>0.92947                       | 38           P^(7) cond.           0.97698           0.975095           0.952092           0.950059           0.946028           0.942079           0.937667           0.931897           0.923063           0.908078                         | 39<br>Logit P^(7)<br>-1.87405<br>-1.50465<br>-1.47284<br>-1.43191<br>-1.3945<br>-1.35545<br>-1.3081<br>-1.24235<br>-1.14519                                     | 0.96054           40           β7           0.97277           0.990288           0.988972           0.987406           0.986097           0.984847           0.983479           0.981822           0.979812                    |
| 31<br>Y^(6)<br>-1.87549<br>-1.84288<br>-1.7844<br>-1.71342<br>-1.65207<br>-1.59098<br>-1.52032<br>-1.42727<br>-1.29811<br>-1.1336             | <b>32</b><br><b>P^(6)</b><br>0.97704<br>0.97554<br>0.97258<br>0.96853<br>0.96853<br>0.96457<br>0.96015<br>0.95438<br>0.94555<br>0.93062<br>0.90612         | 33<br>P^(6) cond.<br>0.97704<br>0.95314<br>0.95026<br>0.94630<br>0.94243<br>0.93811<br>0.93247<br>0.92385<br>0.90926<br>0.88532                                                                                    | 34<br>Logit P^(6)<br>-1.87549<br>-1.50632<br>-1.47493<br>-1.43457<br>-1.39771<br>-1.35924<br>-1.31262<br>-1.2479<br>-1.15229<br>-1.02192                                      | 0.941645           35           β6           0.96054           0.986866           0.984952           0.980766           0.978943           0.976946           0.97157           0.968506                                       | 36<br>Y^(7)<br>-1.87405<br>-1.87405<br>-1.84103<br>-1.7818<br>-1.70992<br>-1.64778<br>-1.58592<br>-1.51436<br>-1.42012<br>-1.42012<br>-1.28932<br>-1.12271 | <b>37</b><br><b>P</b> ^(7)<br>0.97698<br>0.97545<br>0.97545<br>0.97244<br>0.96832<br>0.96428<br>0.95976<br>0.95385<br>0.94481<br>0.92947<br>0.90426 | 38           P^(7) cond.           0.97698           0.97698           0.952992           0.950059           0.946028           0.937667           0.931897           0.923063           0.908078           0.883439                          | 39<br>Logit P^(7)<br>-1.87405<br>-1.87405<br>-1.50465<br>-1.47284<br>-1.43191<br>-1.3945<br>-1.35545<br>-1.35545<br>-1.3081<br>-1.24235<br>-1.14519<br>-1.01271 | 0.96054           40           β7           0.97277           0.990288           0.988972           0.988972           0.986097           0.984847           0.983479           0.981822           0.977736                    |
| 31<br>Y^(6)<br>-1.87549<br>-1.84288<br>-1.7844<br>-1.71342<br>-1.65207<br>-1.59098<br>-1.52032<br>-1.42727<br>-1.29811<br>-1.1336<br>-0.93242 | 32<br>P^(6)<br>0.97704<br>0.97554<br>0.97258<br>0.96853<br>0.96853<br>0.96457<br>0.96015<br>0.95438<br>0.94555<br>0.93062<br>0.93062<br>0.90612<br>0.86586 | 33         P^(6) cond.         0.9         0.97704         0.95314         0.95026         0.94630         0.94243         0.93811         0.93247         0.92385         0.90926         0.88532         0.84598 | 34<br>Logit P <sup>^</sup> (6)<br>-1.87549<br>-1.50632<br>-1.47493<br>-1.47493<br>-1.43457<br>-1.39771<br>-1.35924<br>-1.31262<br>-1.2479<br>-1.15229<br>-1.02192<br>-0.85172 | 0.941645           35           β6           0.96054           0.986866           0.984952           0.982674           0.980766           0.978943           0.976946           0.97157           0.968506           0.965713 | 36<br>Y^(7)<br>-1.87405<br>-1.87405<br>-1.84103<br>-1.7818<br>-1.70992<br>-1.64778<br>-1.58592<br>-1.51436<br>-1.42012<br>-1.28932<br>-1.12271<br>-0.91897 | <b>37</b><br><b>P</b> ^(7)<br>0.97698<br>0.97545<br>0.97244<br>0.96832<br>0.96428<br>0.95976<br>0.95385<br>0.94481<br>0.92947<br>0.90426<br>0.86271 | 38           P^(7) cond.           0.97698           0.9752992           0.9520959           0.9540028           0.946028           0.9437667           0.9331897           0.923063           0.908078           0.883439           0.842846 | 39<br>Logit P^(7)<br>-1.87405<br>-1.50465<br>-1.47284<br>-1.43191<br>-1.3945<br>-1.35545<br>-1.3081<br>-1.24235<br>-1.14519<br>-1.01271<br>-0.83978             | 0.96054           40           β7           0.97277           0.990288           0.988972           0.987406           0.986097           0.984847           0.983479           0.981822           0.977736           0.975857 |

| -0.45395 | 0.71257 | 0.69621 | -0.41466 | 0.962085 | -0.43441 | 0.70450  | 0.688284 | -0.39605 | 0.973462 |
|----------|---------|---------|----------|----------|----------|----------|----------|----------|----------|
| -0.16474 | 0.58163 | 0.56828 | -0.13742 | 0.961114 | -0.14152 | 0.57029  | 0.557165 | -0.11483 | 0.972845 |
| 0.177594 | 0.41213 | 0.40266 | 0.197188 |          | 0.205171 | 0.39883  | 0.389649 | 0.224394 |          |
|          |         |         |          | 13.61878 |          | <u>.</u> | 13.72983 |          |          |
|          |         |         |          | 0.97277  |          |          |          |          | 0.980702 |

| 41       | 42             | 43                              | 44                       | 45       | 46       | 47      | 48                              | 49          | 50       |
|----------|----------------|---------------------------------|--------------------------|----------|----------|---------|---------------------------------|-------------|----------|
| Y^(8)    | P^(8)          | <b>P</b> <sup>^</sup> (8) cond. | Logit P <sup>^</sup> (8) | β8       | Y^(9)    | P^(9)   | <b>P</b> <sup>^</sup> (9) cond. | Logit P^(9) | β9       |
|          |                |                                 |                          |          |          |         |                                 |             |          |
|          |                |                                 |                          |          |          |         |                                 |             |          |
| -1.87312 | 0.97694        | 0.97694                         | -1.87312                 | 0.98070  | -1.87251 | 0.97691 | 0.97691                         | -1.87251    | 0.98585  |
| -1.83983 | 0.97539        | 0.95289                         | -1.50356                 | 0.99251  | -1.83905 | 0.97535 | 0.95283                         | -1.50286    | 0.99395  |
| -1.78011 | 0.97235        | 0.94993                         | -1.47148                 | 0.99158  | -1.77902 | 0.97229 | 0.94985                         | -1.47059    | 0.99327  |
| -1.70765 | 0.96818        | 0.94585                         | -1.43018                 | 0.99048  | -1.70618 | 0.96809 | 0.94574                         | -1.42905    | 0.99247  |
| -1.64501 | 0.96408        | 0.94185                         | -1.39242                 | 0.98956  | -1.6432  | 0.96396 | 0.94170                         | -1.39106    | 0.99181  |
| -1.58263 | 0.95951        | 0.93738                         | -1.35298                 | 0.98868  | -1.5805  | 0.95934 | 0.93719                         | -1.35138    | 0.99117  |
| -1.51049 | 0.95351        | 0.93152                         | -1.30516                 | 0.98772  | -1.50798 | 0.95329 | 0.93128                         | -1.30325    | 0.99048  |
| -1.41549 | 0.94433        | 0.92255                         | -1.23875                 | 0.98657  | -1.41248 | 0.94401 | 0.92221                         | -1.2364     | 0.98965  |
| -1.28362 | 0.92872        | 0.90731                         | -1.14058                 | 0.98517  | -1.27992 | 0.92823 | 0.90680                         | -1.13758    | 0.98866  |
| -1.11565 | 0.90303        | 0.88220                         | -1.00672                 | 0.98374  | -1.11107 | 0.90222 | 0.88139                         | -1.00282    | 0.98764  |
| -0.91025 | 0.86063        | 0.84078                         | -0.83202                 | 0.98245  | -0.90459 | 0.85926 | 0.83942                         | -0.82697    | 0.98674  |
| -0.67995 | 0.79574        | 0.77739                         | -0.62527                 | 0.98150  | -0.67308 | 0.79350 | 0.77518                         | -0.6189     | 0.98609  |
| -0.42174 | 0.69920        | 0.68307                         | -0.38397                 | 0.98085  | -0.41351 | 0.69572 | 0.67966                         | -0.37611    | 0.98566  |
| -0.12646 | 0.56290        | 0.54992                         | -0.10016                 | 0.98046  | -0.11668 | 0.55808 | 0.54519                         | -0.09063    | 0.98541  |
| 0.223059 | 0.39028        | 0.38128                         | 0.242052                 |          | 0.234678 | 0.38477 | 0.37588                         | 0.253527    |          |
|          |                |                                 |                          | 13.80197 |          |         |                                 |             | 13.84887 |
|          |                |                                 |                          | 0.985855 |          |         |                                 |             | 0.989205 |
| 51       | 52             | 53                              | 54                       | 55       |          |         |                                 |             |          |
| Y^(10)   | <b>P</b> ^(10) | P^(10) cond.                    | Logit P^(10)             | β10      |          |         |                                 |             |          |
|          |                |                                 |                          |          |          |         |                                 |             |          |
|          |                |                                 |                          |          | ]        |         |                                 |             |          |
| -1.87212 | 0.97689        | 0.97689                         | -1.87212                 | 0.98920  |          |         |                                 |             |          |
| -1.83854 | 0.97533        | 0.95279                         | -1.5024                  | 0.99489  |          |         |                                 |             |          |
| -1.77831 | 0.97226        | 0.94979                         | -1.47002                 | 0.99438  |          |         |                                 |             |          |
| -1.70522 | 0.96803        | 0.94566                         | -1.42832                 | 0.99377  |          |         |                                 |             |          |
| -1.64203 | 0.96388        | 0.94161                         | -1.39018                 | 0.99327  |          |         |                                 |             |          |

0.99280

0.99228

0.99166

-1.35034

-1.30201

-1.23488

-1.57912

-1.50635

-1.41052

0.95923

0.95314

0.94380

0.93707

0.93112

0.92199

| -1.27751 | 0.92791 | 0.90647 | -1.13563 | 0.99092  |
|----------|---------|---------|----------|----------|
|          |         |         |          |          |
| -1.10809 | 0.90169 | 0.88086 | -1.00029 | 0.99018  |
| -0.90091 | 0.85837 | 0.83853 | -0.82368 | 0.98953  |
| -0.66861 | 0.79203 | 0.77373 | -0.61475 | 0.98907  |
| -0.40816 | 0.69345 | 0.67743 | -0.37099 | 0.98878  |
| -0.11032 | 0.55494 | 0.54211 | -0.08443 | 0.98863  |
| 0.242232 | 0.38120 | 0.37239 | 0.260988 |          |
|          | -       | •       |          | 13.87938 |
|          |         |         |          | 0.991384 |

| 21 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
|-------|----|----|----|----|----|----|----|----|
|-------|----|----|----|----|----|----|----|----|

|                                                                                                                                                                                                                                   |                                                                                                                                                            | ן                                                                                                                                                          | Table of attempt                                                                                                                                                               | s to estimate th                                                                                                                                                                                                                        | e values of a, β f                                                                                                                                          | or Jordanians fema                                                                                                                                         | les                                                                                                                                             |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                                                 | 2                                                                                                                                                          | 3                                                                                                                                                          | 4                                                                                                                                                                              | 5                                                                                                                                                                                                                                       | 6                                                                                                                                                           | 7                                                                                                                                                          | 8                                                                                                                                               | 9                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                          |
| x                                                                                                                                                                                                                                 | l <sub>x</sub>                                                                                                                                             | l <sub>x(10)</sub>                                                                                                                                         | nQx                                                                                                                                                                            | <sub>n</sub> p <sub>10</sub>                                                                                                                                                                                                            | $n^{p}_{10}$ cond.                                                                                                                                          | logit( <sup>p</sup> <sub>10</sub> ) Y                                                                                                                      | Y <sup>s</sup> <sub>x</sub>                                                                                                                     | Y <sup>s</sup> <sub>x(10)</sub>                                                                                                                                                         | β                                                                                                                                                                                                                                                                           |
| 1                                                                                                                                                                                                                                 | 0.98484                                                                                                                                                    |                                                                                                                                                            | 0.0158                                                                                                                                                                         | 0.9842                                                                                                                                                                                                                                  |                                                                                                                                                             | -2.06591                                                                                                                                                   | -2.08691                                                                                                                                        |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                             |
| 5                                                                                                                                                                                                                                 | 0.98248                                                                                                                                                    |                                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                                                                                         |                                                                                                                                                             |                                                                                                                                                            | -2.01337                                                                                                                                        |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                             |
| 10                                                                                                                                                                                                                                | 0.98123                                                                                                                                                    | 0.98123                                                                                                                                                    | 0.00491                                                                                                                                                                        | 0.99509                                                                                                                                                                                                                                 | 0.98044                                                                                                                                                     | -1.95727                                                                                                                                                   | -1.97827                                                                                                                                        | -1.97827                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                           |
| 15                                                                                                                                                                                                                                | 0.98019                                                                                                                                                    | 0.96179                                                                                                                                                    | 0.00530                                                                                                                                                                        | 0.99470                                                                                                                                                                                                                                 | 0.97524                                                                                                                                                     | -1.83674                                                                                                                                                   | -1.95078                                                                                                                                        | -1.61287                                                                                                                                                                                | 0.48345                                                                                                                                                                                                                                                                     |
| 20                                                                                                                                                                                                                                | 0.97846                                                                                                                                                    | 0.96009                                                                                                                                                    | 0.00635                                                                                                                                                                        | 0.99365                                                                                                                                                                                                                                 | 0.97422                                                                                                                                                     | -1.81597                                                                                                                                                   | -1.90803                                                                                                                                        | -1.59026                                                                                                                                                                                | 0.50324                                                                                                                                                                                                                                                                     |
| 25                                                                                                                                                                                                                                | 0.97598                                                                                                                                                    | 0.95766                                                                                                                                                    | 0.00722                                                                                                                                                                        | 0.99278                                                                                                                                                                                                                                 | 0.97336                                                                                                                                                     | -1.79911                                                                                                                                                   | -1.85228                                                                                                                                        | -1.55939                                                                                                                                                                                | 0.50576                                                                                                                                                                                                                                                                     |
| 30                                                                                                                                                                                                                                | 0.97285                                                                                                                                                    | 0.95459                                                                                                                                                    | 0.01002                                                                                                                                                                        | 0.98998                                                                                                                                                                                                                                 | 0.97062                                                                                                                                                     | -1.74882                                                                                                                                                   | -1.78943                                                                                                                                        | -1.52277                                                                                                                                                                                | 0.56208                                                                                                                                                                                                                                                                     |
| 35                                                                                                                                                                                                                                | 0.96882                                                                                                                                                    | 0.95064                                                                                                                                                    | 0.01019                                                                                                                                                                        | 0.98981                                                                                                                                                                                                                                 | 0.97045                                                                                                                                                     | -1.74588                                                                                                                                                   | -1.71815                                                                                                                                        | -1.47895                                                                                                                                                                                | 0.52639                                                                                                                                                                                                                                                                     |
| 40                                                                                                                                                                                                                                | 0.96319                                                                                                                                                    | 0.94511                                                                                                                                                    | 0.01898                                                                                                                                                                        | 0.98102                                                                                                                                                                                                                                 | 0.96183                                                                                                                                                     | -1.6134                                                                                                                                                    | -1.63224                                                                                                                                        | -1.42299                                                                                                                                                                                | 0.68158                                                                                                                                                                                                                                                                     |
| 45                                                                                                                                                                                                                                | 0.95466                                                                                                                                                    | 0.93674                                                                                                                                                    | 0.02532                                                                                                                                                                        | 0.97468                                                                                                                                                                                                                                 | 0.95561                                                                                                                                                     | -1.53469                                                                                                                                                   | -1.52358                                                                                                                                        | -1.34758                                                                                                                                                                                | 0.71852                                                                                                                                                                                                                                                                     |
| 50                                                                                                                                                                                                                                | 0.94074                                                                                                                                                    | 0.92308                                                                                                                                                    | 0.04762                                                                                                                                                                        | 0.95238                                                                                                                                                                                                                                 | 0.93376                                                                                                                                                     | -1.32294                                                                                                                                                   | -1.38237                                                                                                                                        | -1.24249                                                                                                                                                                                | 0.87986                                                                                                                                                                                                                                                                     |
| 55                                                                                                                                                                                                                                | 0.91928                                                                                                                                                    | 0.90203                                                                                                                                                    | 0.06730                                                                                                                                                                        | 0.93270                                                                                                                                                                                                                                 | 0.91445                                                                                                                                                     | -1.18463                                                                                                                                                   | -1.2163                                                                                                                                         | -1.10997                                                                                                                                                                                | 0.90208                                                                                                                                                                                                                                                                     |
| 60                                                                                                                                                                                                                                | 0.88619                                                                                                                                                    | 0.86956                                                                                                                                                    | 0.14103                                                                                                                                                                        | 0.85897                                                                                                                                                                                                                                 | 0.84217                                                                                                                                                     | -0.83722                                                                                                                                                   | -1.0262                                                                                                                                         | -0.94852                                                                                                                                                                                | 1.07933                                                                                                                                                                                                                                                                     |
| 65                                                                                                                                                                                                                                | 0.83458                                                                                                                                                    | 0.81891                                                                                                                                                    | 0.16304                                                                                                                                                                        | 0.83696                                                                                                                                                                                                                                 | 0.82059                                                                                                                                                     | -0.76018                                                                                                                                                   | -0.80922                                                                                                                                        | -0.75451                                                                                                                                                                                | 0.97998                                                                                                                                                                                                                                                                     |
| 70                                                                                                                                                                                                                                | 0.75048                                                                                                                                                    | 0.73639                                                                                                                                                    | 0.30047                                                                                                                                                                        | 0.69953                                                                                                                                                                                                                                 | 0.68584                                                                                                                                                     | -0.39038                                                                                                                                                   | -0.55059                                                                                                                                        | -0.51365                                                                                                                                                                                | 1.06501                                                                                                                                                                                                                                                                     |
| 75                                                                                                                                                                                                                                | 0.62087                                                                                                                                                    | 0.60922                                                                                                                                                    | 0.33814                                                                                                                                                                        | 0.66186                                                                                                                                                                                                                                 | 0.64891                                                                                                                                                     | -0.30712                                                                                                                                                   | -0.24662                                                                                                                                        | -0.22201                                                                                                                                                                                | 0.94310                                                                                                                                                                                                                                                                     |
| 80+                                                                                                                                                                                                                               | 0.44318                                                                                                                                                    | 0.43486                                                                                                                                                    | 1                                                                                                                                                                              | 0                                                                                                                                                                                                                                       | 0                                                                                                                                                           | #DIV/0!                                                                                                                                                    | 0.114133                                                                                                                                        | 0.131022                                                                                                                                                                                |                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                   |                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                                                                                         |                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                 |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                   |                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                                                                                         |                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                 |                                                                                                                                                                                         | 10.8304                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                   |                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                                                                                         | I                                                                                                                                                           | I                                                                                                                                                          |                                                                                                                                                 |                                                                                                                                                                                         | 10.8304<br>0.77360                                                                                                                                                                                                                                                          |
| 11                                                                                                                                                                                                                                | 12                                                                                                                                                         | 13                                                                                                                                                         | 14                                                                                                                                                                             | 15                                                                                                                                                                                                                                      | 16                                                                                                                                                          | 17                                                                                                                                                         | 18                                                                                                                                              | 19                                                                                                                                                                                      | <b>10.8304</b><br><b>0.77360</b><br>20                                                                                                                                                                                                                                      |
| 11<br>Y^(2)                                                                                                                                                                                                                       | 12<br>P^(2)                                                                                                                                                | 13<br>P^(2)                                                                                                                                                | 14<br>Logit P^(2)                                                                                                                                                              | 15<br>β2                                                                                                                                                                                                                                | 16<br>Y^(3)                                                                                                                                                 | 17<br>P^(3)                                                                                                                                                | 18<br>P^(3)                                                                                                                                     | 19<br>Logit P^(3)                                                                                                                                                                       | 10.8304           0.77360           20           β3                                                                                                                                                                                                                         |
| 11<br>Y^(2)                                                                                                                                                                                                                       | 12<br>P^(2)                                                                                                                                                | 13<br>P^(2)                                                                                                                                                | 14<br>Logit P^(2)                                                                                                                                                              | 15<br>β2                                                                                                                                                                                                                                | 16<br>Y^(3)                                                                                                                                                 | 17<br>P^(3)                                                                                                                                                | 18<br>P^(3)                                                                                                                                     | 19<br>Logit P^(3)                                                                                                                                                                       | 10.8304           0.77360           20           β3                                                                                                                                                                                                                         |
| 11<br>Y^(2)                                                                                                                                                                                                                       | 12<br>P^(2)                                                                                                                                                | 13<br>P^(2)                                                                                                                                                | 14<br>Logit P^(2)                                                                                                                                                              | 15<br>β2                                                                                                                                                                                                                                | 16<br>Y^(3)                                                                                                                                                 | 17<br>P^(3)                                                                                                                                                | 18<br>P^(3)                                                                                                                                     | 19<br>Logit P^(3)                                                                                                                                                                       | 10.8304           0.77360           20           β3                                                                                                                                                                                                                         |
| 11<br>Y^(2)<br>-1.98187                                                                                                                                                                                                           | 12<br>P^(2)<br>0.98136                                                                                                                                     | 13<br>P^(2)<br>0.98136                                                                                                                                     | 14<br>Logit P^(2)<br>-1.98187                                                                                                                                                  | 15<br>β2<br>0.77360                                                                                                                                                                                                                     | 16<br>Y^(3)<br>-1.97258                                                                                                                                     | 17<br>P^(3)<br>0.98102                                                                                                                                     | 18<br>P^(3)<br>0.98102                                                                                                                          | 19<br>Logit P^(3)<br>-1.97258                                                                                                                                                           | 10.8304           0.77360           20           β3           0.85906                                                                                                                                                                                                       |
| 11<br>Y^(2)<br>-1.98187<br>-1.9606                                                                                                                                                                                                | 12<br>P^(2)<br>0.98136<br>0.98057                                                                                                                          | 13<br>P^(2)<br>0.98136<br>0.96229                                                                                                                          | 14<br>Logit P^(2)<br>-1.98187<br>-1.61972                                                                                                                                      | 15<br>β2<br>0.77360<br>0.94125                                                                                                                                                                                                          | 16<br>Y^(3)<br>-1.97258<br>-1.94897                                                                                                                         | 17<br>P^(3)<br>0.98102<br>0.98012                                                                                                                          | 18<br>P^(3)<br>0.98102<br>0.96152                                                                                                               | 19<br>Logit P^(3)<br>-1.97258<br>-1.60914                                                                                                                                               | 10.8304           0.77360           20           β3           0.85906           0.96359                                                                                                                                                                                     |
| 11<br>Y^(2)<br>-1.98187<br>-1.9606<br>-1.92753                                                                                                                                                                                    | 12<br>P^(2)<br>0.98136<br>0.98057<br>0.97927                                                                                                               | 13<br>P^(2)<br>0.98136<br>0.96229<br>0.96102                                                                                                               | 14<br>Logit P^(2)<br>-1.98187<br>-1.61972<br>-1.60241                                                                                                                          | 15<br>β2<br>0.77360<br>0.94125<br>0.93325                                                                                                                                                                                               | 16<br>Y^(3)<br>-1.97258<br>-1.94897<br>-1.91224                                                                                                             | 17<br>P^(3)<br>0.98102<br>0.98012<br>0.97864                                                                                                               | 18<br>P^(3)<br>0.98102<br>0.96152<br>0.96006                                                                                                    | 19<br>Logit P^(3)<br>-1.97258<br>-1.60914<br>-1.58983                                                                                                                                   | 10.8304           0.77360           20           β3           0.85906           0.96359           0.95858                                                                                                                                                                   |
| 11<br>Y^(2)<br>-1.98187<br>-1.9606<br>-1.92753<br>-1.8844                                                                                                                                                                         | 12<br>P^(2)<br>0.98136<br>0.98057<br>0.97927<br>0.97744                                                                                                    | 13<br>P^(2)<br>0.98136<br>0.96229<br>0.96102<br>0.95922                                                                                                    | 14<br>Logit P <sup>^</sup> (2)<br>-1.98187<br>-1.61972<br>-1.60241<br>-1.57901                                                                                                 | 15<br>β2<br>0.77360<br>0.94125<br>0.93325<br>0.92301                                                                                                                                                                                    | 16<br>Y^(3)<br>-1.97258<br>-1.94897<br>-1.91224<br>-1.86435                                                                                                 | 17<br>P^(3)<br>0.98102<br>0.98012<br>0.97864<br>0.97654                                                                                                    | 18<br>P^(3)<br>0.98102<br>0.96152<br>0.96006<br>0.95800                                                                                         | 19<br>Logit P^(3)<br>-1.97258<br>-1.60914<br>-1.58983<br>-1.56364                                                                                                                       | 10.8304           0.77360           20           β3           0.85906           0.96359           0.95858           0.95214                                                                                                                                                 |
| 11<br>Y^(2)<br>-1.98187<br>-1.9606<br>-1.92753<br>-1.8844<br>-1.83578                                                                                                                                                             | 12<br>P^(2)<br>0.98136<br>0.98057<br>0.97927<br>0.97744<br>0.97519                                                                                         | 13<br>P^(2)<br>0.98136<br>0.96229<br>0.96102<br>0.95922<br>0.95702                                                                                         | 14<br>Logit P^(2)<br>-1.98187<br>-1.61972<br>-1.60241<br>-1.57901<br>-1.55153                                                                                                  | 15<br>β2<br>0.77360<br>0.94125<br>0.93325<br>0.92301<br>0.91180                                                                                                                                                                         | 16<br>Y^(3)<br>-1.97258<br>-1.94897<br>-1.91224<br>-1.86435<br>-1.81035                                                                                     | 17<br>P^(3)<br>0.98102<br>0.98012<br>0.97864<br>0.97654<br>0.97393                                                                                         | 18<br>P^(3)<br>0.98102<br>0.96152<br>0.96006<br>0.95800<br>0.95545                                                                              | 19<br>Logit P^(3)<br>-1.97258<br>-1.60914<br>-1.58983<br>-1.56364<br>-1.53276                                                                                                           | 10.8304           0.77360           20           β3           0.85906           0.96359           0.95858           0.95214           0.94507                                                                                                                               |
| 11<br>Y^(2)<br>-1.98187<br>-1.9606<br>-1.92753<br>-1.8844<br>-1.83578<br>-1.78064                                                                                                                                                 | 12<br>P^(2)<br>0.98136<br>0.98057<br>0.97927<br>0.97744<br>0.97519<br>0.97238                                                                              | 13<br>P^(2)<br>0.98136<br>0.96229<br>0.96102<br>0.95922<br>0.95702<br>0.95426                                                                              | 14<br>Logit P <sup>°</sup> (2)<br>-1.98187<br>-1.61972<br>-1.60241<br>-1.57901<br>-1.55153<br>-1.51897                                                                         | 15<br>β2<br>0.77360<br>0.94125<br>0.93325<br>0.92301<br>0.91180<br>0.89963                                                                                                                                                              | 16<br>Y^(3)<br>-1.97258<br>-1.94897<br>-1.91224<br>-1.86435<br>-1.81035<br>-1.74912                                                                         | 17<br>P^(3)<br>0.98102<br>0.98012<br>0.97864<br>0.97654<br>0.97393<br>0.97064                                                                              | 18<br>P^(3)<br>0.98102<br>0.96152<br>0.96006<br>0.95800<br>0.95545<br>0.95221                                                                   | 19<br>Logit P <sup>*</sup> (3)<br>-1.97258<br>-1.60914<br>-1.58983<br>-1.56364<br>-1.53276<br>-1.49603                                                                                  | 10.8304           0.77360           20           β3           0.85906           0.96359           0.95858           0.95214           0.94507           0.93736                                                                                                             |
| 11<br>Y^(2)<br>-1.98187<br>-1.9606<br>-1.92753<br>-1.8844<br>-1.83578<br>-1.78064<br>-1.71418                                                                                                                                     | 12<br>P^(2)<br>0.98136<br>0.98057<br>0.97927<br>0.97744<br>0.97519<br>0.97238<br>0.96858                                                                   | 13<br>P^(2)<br>0.98136<br>0.96229<br>0.96102<br>0.95922<br>0.95702<br>0.95702<br>0.95426<br>0.95053                                                        | 14<br>Logit P^(2)<br>-1.98187<br>-1.61972<br>-1.60241<br>-1.57901<br>-1.55153<br>-1.51897<br>-1.47779                                                                          | 15<br>β2<br>0.77360<br>0.94125<br>0.93325<br>0.92301<br>0.91180<br>0.89963<br>0.88583                                                                                                                                                   | 16<br>Y^(3)<br>-1.97258<br>-1.94897<br>-1.91224<br>-1.86435<br>-1.81035<br>-1.74912<br>-1.67532                                                             | 17<br>P^(3)<br>0.98102<br>0.98012<br>0.97864<br>0.97654<br>0.97393<br>0.97064<br>0.96613                                                                   | 18<br>P^(3)<br>0.98102<br>0.96152<br>0.96006<br>0.95800<br>0.95545<br>0.95221<br>0.94779                                                        | 19<br>Logit P^(3)<br>-1.97258<br>-1.60914<br>-1.58983<br>-1.56364<br>-1.53276<br>-1.49603<br>-1.44941                                                                                   | 10.8304           0.77360           20           β3           0.85906           0.96359           0.95858           0.95214           0.94507           0.92858                                                                                                             |
| 11<br>Y^(2)<br>-1.98187<br>-1.9606<br>-1.92753<br>-1.8844<br>-1.83578<br>-1.78064<br>-1.71418<br>-1.63012                                                                                                                         | 12<br>P^(2)<br>0.98136<br>0.98057<br>0.97927<br>0.97744<br>0.97519<br>0.97238<br>0.96858<br>0.96304                                                        | 13<br>P^(2)<br>0.98136<br>0.96229<br>0.96102<br>0.95922<br>0.95702<br>0.95702<br>0.95426<br>0.95053<br>0.94509                                             | 14<br>Logit P <sup>^</sup> (2)<br>-1.98187<br>-1.61972<br>-1.60241<br>-1.57901<br>-1.55153<br>-1.51897<br>-1.47779<br>-1.42279                                                 | 15<br>β2<br>0.77360<br>0.94125<br>0.93325<br>0.92301<br>0.91180<br>0.89963<br>0.88583<br>0.86987                                                                                                                                        | 16<br>Y^(3)<br>-1.97258<br>-1.94897<br>-1.91224<br>-1.86435<br>-1.81035<br>-1.74912<br>-1.67532<br>-1.58198                                                 | 17<br>P^(3)<br>0.98102<br>0.98012<br>0.97864<br>0.97654<br>0.97654<br>0.97393<br>0.97064<br>0.96613<br>0.95945                                             | 18<br>P^(3)<br>0.98102<br>0.96152<br>0.96006<br>0.95800<br>0.95545<br>0.95221<br>0.94779<br>0.94124                                             | 19<br>Logit P^(3)<br>-1.97258<br>-1.60914<br>-1.58983<br>-1.56364<br>-1.53276<br>-1.49603<br>-1.49603<br>-1.49603<br>-1.4961<br>-1.3869                                                 | 10.8304           0.77360           20           β3           0.85906           0.96359           0.95858           0.95214           0.94507           0.93736           0.92858           0.91842                                                                         |
| 11<br>Y^(2)<br>-1.98187<br>-1.9606<br>-1.92753<br>-1.8844<br>-1.83578<br>-1.78064<br>-1.71418<br>-1.63012<br>-1.52088                                                                                                             | 12<br>P^(2)<br>0.98136<br>0.98057<br>0.97927<br>0.97744<br>0.97519<br>0.97238<br>0.96858<br>0.96858<br>0.96304<br>0.95443                                  | 13<br>P^(2)<br>0.98136<br>0.96229<br>0.96102<br>0.95922<br>0.95702<br>0.95702<br>0.95426<br>0.95053<br>0.94509<br>0.93664                                  | 14<br>Logit P^(2)<br>-1.98187<br>-1.61972<br>-1.60241<br>-1.57901<br>-1.55153<br>-1.51897<br>-1.47779<br>-1.42279<br>-1.34670                                                  | 15<br>β2<br>0.77360<br>0.94125<br>0.93325<br>0.92301<br>0.91180<br>0.89963<br>0.88583<br>0.86987<br>0.85172                                                                                                                             | 16<br>Y^(3)<br>-1.97258<br>-1.94897<br>-1.91224<br>-1.86435<br>-1.81035<br>-1.74912<br>-1.67532<br>-1.58198<br>-1.46066                                     | 17<br>P^(3)<br>0.98102<br>0.98012<br>0.97864<br>0.97654<br>0.97654<br>0.97064<br>0.96613<br>0.95945<br>0.94889                                             | 18<br>P^(3)<br>0.98102<br>0.96152<br>0.96006<br>0.95545<br>0.95545<br>0.95221<br>0.94779<br>0.94124<br>0.93088                                  | 19<br>Logit P^(3)<br>-1.97258<br>-1.60914<br>-1.58983<br>-1.56364<br>-1.53276<br>-1.49603<br>-1.44941<br>-1.3869<br>-1.30014                                                            | 10.8304           0.77360           20           β3           0.85906           0.96359           0.95858           0.95214           0.94507           0.92858           0.91842           0.90686                                                                         |
| 11<br>Y^(2)<br>-1.98187<br>-1.9606<br>-1.92753<br>-1.8844<br>-1.83578<br>-1.78064<br>-1.71418<br>-1.63012<br>-1.52088<br>-1.39241                                                                                                 | 12<br>P^(2)<br>0.98136<br>0.98057<br>0.97927<br>0.97744<br>0.97519<br>0.97238<br>0.96858<br>0.96858<br>0.96304<br>0.95443<br>0.95443<br>0.94185            | 13<br>P^(2)<br>0.98136<br>0.96229<br>0.96102<br>0.95922<br>0.95702<br>0.95702<br>0.95426<br>0.95053<br>0.94509<br>0.93664<br>0.92430                       | 14<br>Logit P <sup>^</sup> (2)<br>-1.98187<br>-1.61972<br>-1.60241<br>-1.57901<br>-1.55153<br>-1.51897<br>-1.47779<br>-1.42279<br>-1.34670<br>-1.25110                         | 15           β2           0.77360           0.94125           0.93325           0.92301           0.91180           0.89963           0.88583           0.86987           0.85172           0.83404                                     | 16<br>Y^(3)<br>-1.97258<br>-1.94897<br>-1.91224<br>-1.86435<br>-1.81035<br>-1.74912<br>-1.67532<br>-1.58198<br>-1.46066<br>-1.31800                         | 17<br>P^(3)<br>0.98102<br>0.98012<br>0.97864<br>0.97654<br>0.97654<br>0.97393<br>0.97064<br>0.96613<br>0.95945<br>0.94889<br>0.93314                       | 18<br>P^(3)<br>0.98102<br>0.96152<br>0.96006<br>0.95800<br>0.95545<br>0.95221<br>0.94779<br>0.94124<br>0.93088<br>0.91543                       | 19<br>Logit P^(3)<br>-1.97258<br>-1.60914<br>-1.58983<br>-1.56364<br>-1.53276<br>-1.49603<br>-1.49603<br>-1.49603<br>-1.4941<br>-1.3869<br>-1.30014<br>-1.19092                         | 10.8304           0.77360           20           β3           0.85906           0.96359           0.95858           0.95214           0.94507           0.93736           0.92858           0.91842           0.90686           0.89564                                     |
| 11           Y^(2)           -1.98187           -1.9606           -1.92753           -1.8844           -1.83578           -1.78064           -1.71418           -1.63012           -1.52088           -1.39241           -1.24535 | 12<br>P^(2)<br>0.98136<br>0.98057<br>0.97927<br>0.97744<br>0.97519<br>0.97238<br>0.96858<br>0.96858<br>0.96304<br>0.95443<br>0.95443<br>0.92349            | 13<br>P^(2)<br>0.98136<br>0.96229<br>0.96102<br>0.95922<br>0.95702<br>0.95702<br>0.95426<br>0.95053<br>0.94509<br>0.93664<br>0.92430<br>0.90627            | 14<br>Logit P <sup>^</sup> (2)<br>-1.98187<br>-1.61972<br>-1.60241<br>-1.57901<br>-1.55153<br>-1.51897<br>-1.47779<br>-1.42279<br>-1.34670<br>-1.25110<br>-1.13449             | 15           β2           0.77360           0.94125           0.93325           0.92301           0.91180           0.88983           0.86987           0.85172           0.83404           0.81819                                     | 16<br>Y^(3)<br>-1.97258<br>-1.94897<br>-1.91224<br>-1.86435<br>-1.81035<br>-1.74912<br>-1.67532<br>-1.58198<br>-1.46066<br>-1.31800<br>-1.15469             | 17<br>P^(3)<br>0.98102<br>0.98012<br>0.97864<br>0.97654<br>0.97654<br>0.97654<br>0.97064<br>0.96613<br>0.95945<br>0.94889<br>0.93314<br>0.90965            | 18<br>P^(3)<br>0.98102<br>0.96152<br>0.96006<br>0.95545<br>0.95545<br>0.95221<br>0.94779<br>0.94124<br>0.93088<br>0.91543<br>0.89239            | 19<br>Logit P^(3)<br>-1.97258<br>-1.60914<br>-1.58983<br>-1.56364<br>-1.53276<br>-1.49603<br>-1.49603<br>-1.44941<br>-1.3869<br>-1.30014<br>-1.19092<br>-1.05767                        | 10.8304           0.77360           20           β3           0.85906           0.96359           0.95858           0.95214           0.94507           0.93736           0.92858           0.91842           0.90686           0.89564           0.88567                   |
| 11<br>Y^(2)<br>-1.98187<br>-1.9606<br>-1.92753<br>-1.8844<br>-1.83578<br>-1.78064<br>-1.71418<br>-1.63012<br>-1.52088<br>-1.39241<br>-1.24535<br>-1.07749                                                                         | 12<br>P^(2)<br>0.98136<br>0.98057<br>0.97927<br>0.97744<br>0.97519<br>0.97238<br>0.96858<br>0.96858<br>0.96304<br>0.95443<br>0.95443<br>0.92349<br>0.89613 | 13<br>P^(2)<br>0.98136<br>0.96229<br>0.96102<br>0.95922<br>0.95702<br>0.95702<br>0.95426<br>0.95053<br>0.94509<br>0.93664<br>0.92430<br>0.90627<br>0.87943 | 14<br>Logit P <sup>^</sup> (2)<br>-1.98187<br>-1.61972<br>-1.60241<br>-1.57901<br>-1.55153<br>-1.51897<br>-1.47779<br>-1.42279<br>-1.34670<br>-1.25110<br>-1.13449<br>-0.99353 | 15           β2           0.77360           0.94125           0.93325           0.92301           0.91180           0.89963           0.88583           0.86987           0.85172           0.83404           0.81819           0.80485 | 16<br>Y^(3)<br>-1.97258<br>-1.94897<br>-1.91224<br>-1.86435<br>-1.81035<br>-1.74912<br>-1.67532<br>-1.58198<br>-1.46066<br>-1.31800<br>-1.15469<br>-0.96829 | 17<br>P^(3)<br>0.98102<br>0.98012<br>0.97864<br>0.97654<br>0.97654<br>0.97393<br>0.97064<br>0.96613<br>0.95945<br>0.94889<br>0.93314<br>0.90965<br>0.87398 | 18<br>P^(3)<br>0.98102<br>0.96152<br>0.96006<br>0.95800<br>0.95545<br>0.95221<br>0.94779<br>0.94124<br>0.93088<br>0.91543<br>0.89239<br>0.85739 | 19<br>Logit P^(3)<br>-1.97258<br>-1.60914<br>-1.58983<br>-1.56364<br>-1.53276<br>-1.49603<br>-1.49603<br>-1.49603<br>-1.4941<br>-1.3869<br>-1.30014<br>-1.19092<br>-1.05767<br>-0.89688 | 10.8304           0.77360           20           β3           0.85906           0.96359           0.95858           0.95214           0.94507           0.93736           0.92858           0.91842           0.90686           0.89564           0.88567           0.87738 |

| -0.64227 | 0.78322 | 0.76862 | -0.60027 | 0.78591 | -0.48498 | 0.72511 | 0.71135 | -0.45097 | 0.86596 |
|----------|---------|---------|----------|---------|----------|---------|---------|----------|---------|
| -0.36319 | 0.67401 | 0.66145 | -0.33487 |         | -0.17507 | 0.58665 | 0.57552 | -0.1522  |         |
|          |         |         |          | 12.0269 |          |         |         |          | 12.7650 |
|          |         |         |          | 0.85906 |          |         |         |          | 0.91179 |

| Y^(4)    | P^(4)   | P^(4)       | Logit P <sup>^</sup> (4) | β4      | Y^(5)    | P^(5)    | <b>P</b> <sup>^</sup> (5) <b>cond.</b> | Logit P <sup>^</sup> (5) | β5      |
|----------|---------|-------------|--------------------------|---------|----------|----------|----------------------------------------|--------------------------|---------|
|          |         |             |                          |         |          |          |                                        |                          |         |
|          |         |             |                          |         |          |          |                                        |                          |         |
| -1.96686 | 0.98080 | 0.98080     | -1.96686                 | 0.91179 | -1.96328 | 0.98067  | 0.98067                                | -1.96328                 | 0.94470 |
| -1.94179 | 0.97984 | 0.96103     | -1.6026                  | 0.97737 | -1.93731 | 0.97966  | 0.960723                               | -1.59852                 | 0.98598 |
| -1.90281 | 0.97824 | 0.95946     | -1.58206                 | 0.97422 | -1.89693 | 0.977987 | 0.959082                               | -1.5772                  | 0.98400 |
| -1.85197 | 0.97597 | 0.95723     | -1.55413                 | 0.97017 | -1.84425 | 0.975601 | 0.956742                               | -1.54818                 | 0.98144 |
| -1.79467 | 0.97313 | 0.95445     | -1.52112                 | 0.96570 | -1.78488 | 0.972609 | 0.953808                               | -1.51383                 | 0.97863 |
| -1.72968 | 0.96951 | 0.95090     | -1.48177                 | 0.96082 | -1.71755 | 0.968783 | 0.950057                               | -1.47281                 | 0.97554 |
| -1.65135 | 0.96452 | 0.94601     | -1.4317                  | 0.95526 | -1.63639 | 0.963483 | 0.944858                               | -1.42057                 | 0.97203 |
| -1.55227 | 0.95708 | 0.93871     | -1.36443                 | 0.94881 | -1.53374 | 0.955531 | 0.93706                                | -1.35029                 | 0.96794 |
| -1.42351 | 0.94516 | 0.92702     | -1.27091                 | 0.94147 | -1.40033 | 0.942712 | 0.924489                               | -1.25248                 | 0.96330 |
| -1.2721  | 0.92718 | 0.90939     | -1.15308                 | 0.93438 | -1.24345 | 0.923218 | 0.905372                               | -1.1292                  | 0.95882 |
| -1.09877 | 0.90003 | 0.88275     | -1.00937                 | 0.92810 | -1.06386 | 0.893569 | 0.876296                               | -0.97891                 | 0.95486 |
| -0.90093 | 0.85837 | 0.84190     | -0.83621                 | 0.92292 | -0.85888 | 0.847841 | 0.831452                               | -0.79798                 | 0.95161 |
| -0.66511 | 0.79088 | 0.77570     | -0.62038                 | 0.91882 | -0.61455 | 0.773662 | 0.758707                               | -0.5728                  | 0.94906 |
| -0.38795 | 0.68480 | 0.67165     | -0.35784                 | 0.91591 | -0.3274  | 0.65809  | 0.645369                               | -0.29937                 | 0.94726 |
| -0.05902 | 0.52948 | 0.51931     | -0.03865                 |         | 0.013406 | 0.493298 | 0.483762                               | 0.032487                 |         |
|          |         |             |                          | 13.2257 |          |          |                                        |                          | 13.5152 |
|          |         |             |                          | 0.94470 |          |          |                                        |                          | 0.96537 |
| 31       | 32      | 33          | 34                       | 35      | 36       | 37       | 38                                     | 39                       | 40      |
| Y^(6)    | P^(6)   | P^(6) cond. | Logit P <sup>^</sup> (6) | β6      | Y^(7)    | P^(7)    | $P^{(7)}$ cond.                        | Logit P <sup>^</sup> (7) | β7      |
|          |         |             |                          |         |          |          |                                        |                          |         |
|          |         |             |                          |         |          |          |                                        |                          |         |
| -1.96104 | 0.98058 | 0.98058     | -1.96104                 | 0.96537 | -1.95962 | 0.98053  | 0.98053                                | -1.95962                 | 0.97841 |
| -1.93449 | 0.97955 | 0.96053     | -1.59596                 | 0.99138 | -1.93272 | 0.979476 | 0.960406                               | -1.59434                 | 0.99479 |
| -1.89323 | 0.97783 | 0.95884     | -1.57415                 | 0.99014 | -1.8909  | 0.977726 | 0.95869                                | -1.57223                 | 0.99402 |
| -1.8394  | 0.97537 | 0.95643     | -1.54444                 | 0.98854 | -1.83634 | 0.975221 | 0.956234                               | -1.54208                 | 0.99301 |
| -1.77873 | 0.97228 | 0.95340     | -1.50924                 | 0.98677 | -1.77485 | 0.972069 | 0.953143                               | -1.50634                 | 0.99190 |
| -1.70992 | 0.96832 | 0.94952     | -1.46717                 | 0.98482 | -1.70511 | 0.968023 | 0.949176                               | -1.46361                 | 0.99069 |
| -1.62699 | 0.96282 | 0.94412     | -1.41354                 | 0.98261 | -1.62106 | 0.962389 | 0.943651                               | -1.4091                  | 0.98930 |
| -1.52209 | 0.95453 | 0.93600     | -1.34135                 | 0.98003 | -1.51475 | 0.953889 | 0.935317                               | -1.33569                 | 0.98768 |
| -1.38577 | 0.94112 | 0.92285     | -1.24083                 | 0.97710 | -1.37658 | 0.940091 | 0.921788                               | -1.23345                 | 0.98584 |
| -1.22545 | 0.92063 | 0.90275     | -1.1141                  | 0.97428 | -1.2141  | 0.918953 | 0.901061                               | -1.10453                 | 0.98406 |

| -1.04193 | 0.88933 | 0.87206 | -0.95964 | 0.97178 | -1.0281  | 0.886573 | 0.869312 | -0.94744 | 0.98250 |
|----------|---------|---------|----------|---------|----------|----------|----------|----------|---------|
| -0.83247 | 0.84090 | 0.82457 | -0.77382 | 0.96974 | -0.81581 | 0.836391 | 0.820107 | -0.75854 | 0.98122 |
| -0.58279 | 0.76235 | 0.74754 | -0.54278 | 0.96814 | -0.56276 | 0.755011 | 0.740311 | -0.52379 | 0.98021 |
| -0.28935 | 0.64077 | 0.62833 | -0.26253 | 0.96701 | -0.26536 | 0.62965  | 0.61739  | -0.23924 | 0.97950 |
| 0.058909 | 0.47058 | 0.46144 | 0.077267 |         | 0.087608 | 0.456308 | 0.447424 | 0.105543 |         |
|          |         |         |          | 13.6977 |          |          |          |          | 13.8131 |
|          |         |         |          | 0.97841 |          |          |          |          | 0.98665 |

| 41       | 42      | 43           | 44                        | 45      | 46       | 47      | 48                       | 49                       | 50      |
|----------|---------|--------------|---------------------------|---------|----------|---------|--------------------------|--------------------------|---------|
| Y^(8)    | P^(8)   | P^(8) cond.  | Logit P <sup>^</sup> (8)  | β8      | Y^(9)    | P^(9)   | P <sup>^</sup> (9) cond. | Logit P <sup>^</sup> (9) | β9      |
|          |         |              |                           |         |          |         |                          |                          |         |
|          |         |              |                           |         |          |         |                          |                          |         |
| -1.95872 | 0.98050 | 0.98050      | -1.95872                  | 0.98665 | -1.95816 | 0.98047 | 0.98047                  | -1.95816                 | 0.99187 |
| -1.9316  | 0.97943 | 0.96033      | -1.59332                  | 0.99695 | -1.93089 | 0.97940 | 0.96028                  | -1.59267                 | 0.99831 |
| -1.88942 | 0.97766 | 0.95859      | -1.57101                  | 0.99647 | -1.88849 | 0.97762 | 0.95853                  | -1.57024                 | 0.99802 |
| -1.83441 | 0.97513 | 0.95611      | -1.54058                  | 0.99585 | -1.83319 | 0.97507 | 0.95603                  | -1.53964                 | 0.99764 |
| -1.7724  | 0.97194 | 0.95298      | -1.5045                   | 0.99516 | -1.77084 | 0.97185 | 0.95288                  | -1.50334                 | 0.99722 |
| -1.70207 | 0.96783 | 0.94896      | -1.46135                  | 0.99440 | -1.70015 | 0.96771 | 0.94882                  | -1.45992                 | 0.99675 |
| -1.61731 | 0.96212 | 0.94335      | -1.40629                  | 0.99353 | -1.61494 | 0.96194 | 0.94316                  | -1.40450                 | 0.99622 |
| -1.5101  | 0.95348 | 0.93488      | -1.33211                  | 0.99253 | -1.50716 | 0.95322 | 0.93461                  | -1.32984                 | 0.99560 |
| -1.37077 | 0.93943 | 0.92111      | -1.22877                  | 0.99138 | -1.36709 | 0.93901 | 0.92068                  | -1.22581                 | 0.99489 |
| -1.20692 | 0.91788 | 0.89998      | -1.09847                  | 0.99027 | -1.20238 | 0.91719 | 0.89928                  | -1.09463                 | 0.99420 |
| -1.01936 | 0.88480 | 0.86755      | -0.93972                  | 0.98929 | -1.01382 | 0.88367 | 0.86642                  | -0.93481                 | 0.99359 |
| -0.80528 | 0.83349 | 0.81723      | -0.74885                  | 0.98848 | -0.79861 | 0.83163 | 0.81539                  | -0.74271                 | 0.99309 |
| -0.55009 | 0.75030 | 0.73566      | -0.51177                  | 0.98785 | -0.54208 | 0.74728 | 0.73269                  | -0.50415                 | 0.99269 |
| -0.25019 | 0.62255 | 0.61040      | -0.22451                  | 0.98740 | -0.24058 | 0.61802 | 0.60595                  | -0.21517                 | 0.99241 |
| 0.105753 | 0.44732 | 0.43860      | 0.12343                   |         | 0.11724  | 0.44165 | 0.43302                  | 0.13476                  |         |
|          |         |              |                           | 13.8862 |          |         |                          |                          | 13.9325 |
|          |         |              |                           | 0.99187 |          |         |                          |                          | 0.99518 |
| 51       | 52      | 53           | 54                        | 55      |          |         |                          |                          |         |
| Y^(10)   | P^(10)  | P^(10) cond. | Logit P <sup>^</sup> (10) | β10     |          |         |                          |                          |         |
|          |         |              |                           |         |          |         |                          |                          |         |
|          |         |              |                           |         |          |         |                          |                          |         |
| -1.95780 | 0.98046 | 0.98046      | -1.95780                  | 0.99518 |          |         |                          |                          |         |
| -1.93044 | 0.97938 | 0.96025      | -1.59226                  | 0.99918 |          |         |                          |                          |         |
| -1.88790 | 0.97759 | 0.95849      | -1.56975                  | 0.99900 |          |         |                          |                          |         |
| -1.83241 | 0.97503 | 0.95598      | -1.53904                  | 0.99878 |          |         |                          |                          |         |

| -1.76986 | 0.97180 | 0.95281  | -1.50260 | 0.99852 |
|----------|---------|----------|----------|---------|
| -1.69893 | 0.96764 | 0.94873  | -1.45902 | 0.99824 |
| -1.61343 | 0.96183 | 0.94304  | -1.40337 | 0.99792 |
| -1.50530 | 0.95305 | 0.93443  | -1.32840 | 0.99755 |
| -1.36476 | 0.93875 | 0.92040  | -1.22393 | 0.99712 |
| -1.19950 | 0.91675 | 0.89884  | -1.09219 | 0.99670 |
| -1.01031 | 0.88295 | 0.86569  | -0.93170 | 0.99632 |
| -0.79438 | 0.83044 | 0.81422  | -0.73882 | 0.99601 |
| -0.53699 | 0.74535 | 0.73079  | -0.49932 | 0.99576 |
| -0.23449 | 0.61514 | 0.60312  | -0.20925 | 0.99558 |
| 0.12452  | 0.43806 | 0.429500 | 0.14195  |         |
|          |         |          |          | 13.9619 |
|          |         |          |          | 0.99728 |

|          |         | Table    | of attempts to es        | timate the values | s of (a, β) civil st | atus and passports/1 | nales    |                          |         |
|----------|---------|----------|--------------------------|-------------------|----------------------|----------------------|----------|--------------------------|---------|
| 1        | 2       | 3        | 4                        | 5                 | 6                    | 7                    | 8        | 9                        | 10      |
| x        | lx      | lx(10)   | nQx                      | np10              | np10 cond.           | logit(np10) Y        | Ysx      | Ysx(10)                  | β       |
| 1        | 0.97856 |          | 0.0184                   | 0.98160           |                      | -1.9884              | -1.91041 |                          |         |
| 5        | 0.97521 |          |                          |                   |                      |                      | -1.83611 |                          |         |
| 10       | 0.97303 | 0.97303  | 0.00292                  | 0.99708           | 0.97684              | -1.87085             | -1.7928  | -1.79284                 | 1.00000 |
| 15       | 0.97119 | 0.94500  | 0.00429                  | 0.99571           | 0.9726               | -1.78550             | -1.7589  | -1.42190                 | 0.41537 |
| 20       | 0.96758 | 0.94148  | 0.00637                  | 0.99363           | 0.9706               | -1.74861             | -1.6980  | -1.38908                 | 0.45999 |
| 25       | 0.96261 | 0.93665  | 0.00802                  | 0.99198           | 0.9690               | -1.72110             | -1.6241  | -1.34680                 | 0.47429 |
| 30       | 0.95773 | 0.93190  | 0.01034                  | 0.98966           | 0.9667               | -1.68470             | -1.5602  | -1.30812                 | 0.50428 |
| 35       | 0.95227 | 0.92659  | 0.01325                  | 0.98675           | 0.9639               | -1.64224             | -1.4966  | -1.26771                 | 0.53862 |
| 40       | 0.94512 | 0.91963  | 0.01856                  | 0.98144           | 0.9587               | -1.57238             | -1.4231  | -1.21867                 | 0.60143 |
| 45       | 0.93416 | 0.90897  | 0.03204                  | 0.96796           | 0.9455               | -1.42712             | -1.3262  | -1.15054                 | 0.73867 |
| 50       | 0.91556 | 0.89087  | 0.05146                  | 0.94854           | 0.9266               | -1.26756             | -1.1917  | -1.04982                 | 0.83762 |
| 55       | 0.88503 | 0.86116  | 0.08539                  | 0.91461           | 0.8934               | -1.06308             | -1.0205  | -0.91248                 | 0.92726 |
| 60       | 0.83508 | 0.81256  | 0.11605                  | 0.88395           | 0.8635               | -0.92222             | -0.8110  | -0.73336                 | 0.90582 |
| 65       | 0.75995 | 0.73945  | 0.18303                  | 0.81697           | 0.7980               | -0.68707             | -0.5762  | -0.52157                 | 0.93700 |
| 70       | 0.65154 | 0.63397  | 0.28572                  | 0.71428           | 0.6977               | -0.41827             | -0.3129  | -0.27464                 | 0.95988 |
| 75       | 0.50591 | 0.49227  | 0.41481                  | 0.58519           | 0.5716               | -0.14426             | -0.0118  | 0.01547                  | 0.95756 |
| 80       | 0.33422 | 0.32521  | 1.00000                  | 0.00000           | 0.0000               | #DIV/0!              | 0.3446   | 0.36497                  |         |
|          |         |          |                          |                   |                      |                      |          |                          | 10.2578 |
|          |         |          |                          |                   |                      |                      |          |                          | 0.73270 |
| 11       | 12      | 13       | 14                       | 15                | 16                   | 17                   | 18       | 19                       | 20      |
| Y^(2)    | P^(2)   | P^(2)    | Logit P <sup>^</sup> (2) | β2                | Y^(3)                | P^(3)                | P^(3)    | Logit P <sup>^</sup> (3) | β3      |
|          |         |          |                          |                   |                      |                      |          |                          |         |
|          |         |          |                          |                   |                      |                      |          |                          |         |
| -1.90228 | 0.97822 | 0.978216 | -1.90228                 | 0.73270           | -1.89110             | 0.97773              | 0.97773  | -1.8911                  | 0.82773 |
| -1.87740 | 0.97713 | 0.955844 | -1.53744                 | 0.92316           | -1.86301             | 0.97648              | 0.95474  | -1.52446                 | 0.94972 |
| -1.83279 | 0.97505 | 0.953809 | -1.51384                 | 0.91033           | -1.81261             | 0.97405              | 0.95236  | -1.49764                 | 0.94139 |
| -1.77865 | 0.97228 | 0.951095 | -1.48387                 | 0.89522           | -1.75145             | 0.97077              | 0.94916  | -1.4634                  | 0.93153 |
| -1.73185 | 0.96964 | 0.948514 | -1.45680                 | 0.88267           | -1.69857             | 0.96762              | 0.94607  | -1.43232                 | 0.92330 |
| -1.68525 | 0.96677 | 0.945710 | -1.42879                 | 0.87073           | -1.64593             | 0.96415              | 0.94268  | -1.40005                 | 0.91545 |
| -1.63135 | 0.96313 | 0.942146 | -1.39512                 | 0.85768           | -1.58504             | 0.95969              | 0.93832  | -1.36111                 | 0.90685 |
| -1.56037 | 0.95774 | 0.936877 | -1.34873                 | 0.84183           | -1.50485             | 0.95301              | 0.93179  | -1.30727                 | 0.89639 |
| -1.46185 | 0.94901 | 0.928333 | -1.28068                 | 0.82238           | -1.39355             | 0.94198              | 0.92100  | -1.22802                 | 0.88357 |
| -1.33636 | 0.93540 | 0.915021 | -1.18827                 | 0.80181           | -1.25179             | 0.92439              | 0.90381  | -1.12015                 | 0.87007 |
| -1.18290 | 0.91418 | 0.894268 | -1.06755                 | 0.78235           | -1.07843             | 0.89631              | 0.87635  | -0.97916                 | 0.85744 |
| -1.01084 | 0.88305 | 0.863818 | -0.92369                 | 0.76663           | -0.88405             | 0.85422              | 0.83520  | -0.81147                 | 0.84743 |
| -0.81793 | 0.83697 | 0.818737 | -0.75391                 | 0.75470           | -0.66611             | 0.79121              | 0.77359  | -0.61435                 | 0.84001 |

| -0.59732 | 0.76757 | 0.750849 | -0.55157 | 0.74607  | -0.41689 | 0.69715 | 0.68163 | -0.38064 | 0.83483  |
|----------|---------|----------|----------|----------|----------|---------|---------|----------|----------|
| -0.33618 | 0.66203 | 0.647612 | -0.30428 |          | -0.12189 | 0.56064 | 0.54816 | -0.09662 |          |
|          |         |          |          | 11.58825 |          |         |         |          | 12.42572 |
|          |         |          |          | 0.82773  |          |         |         |          | 0.88755  |

| 21       | 22      | 23              | 24                       | 25       | 26       | 27      | 28                       | 29                       | 30       |
|----------|---------|-----------------|--------------------------|----------|----------|---------|--------------------------|--------------------------|----------|
| Y^(4)    | P^(4)   | P^(4)           | Logit P <sup>^</sup> (4) | β4       | Y^(5)    | P^(5)   | $P^{(5)}$ cond.          | Logit P <sup>^</sup> (5) | β5       |
|          |         |                 |                          |          |          |         |                          |                          |          |
|          |         |                 |                          |          |          |         |                          |                          |          |
| -1.88407 | 0.97743 | 0.97743         | -1.88407                 | 0.88755  | -1.87958 | 0.97723 | 0.97723                  | -1.87958                 | 0.92572  |
| -1.85394 | 0.97606 | 0.95402         | -1.51629                 | 0.96645  | -1.84816 | 0.97579 | 0.95357                  | -1.51108                 | 0.97712  |
| -1.79990 | 0.97340 | 0.95142         | -1.48742                 | 0.96099  | -1.79179 | 0.97297 | 0.95082                  | -1.48089                 | 0.97351  |
| -1.73432 | 0.96978 | 0.94789         | -1.45045                 | 0.95451  | -1.72339 | 0.96914 | 0.94707                  | -1.44216                 | 0.96922  |
| -1.67762 | 0.96628 | 0.94446         | -1.41679                 | 0.94909  | -1.66426 | 0.96539 | 0.94341                  | -1.40683                 | 0.96562  |
| -1.62118 | 0.96240 | 0.94067         | -1.38176                 | 0.94391  | -1.60538 | 0.96124 | 0.93935                  | -1.37001                 | 0.96218  |
| -1.55589 | 0.95738 | 0.93576         | -1.3394                  | 0.93823  | -1.53729 | 0.95583 | 0.93406                  | -1.32544                 | 0.95841  |
| -1.46991 | 0.94978 | 0.92834         | -1.28073                 | 0.93132  | -1.44761 | 0.94761 | 0.92603                  | -1.26363                 | 0.95383  |
| -1.35056 | 0.93709 | 0.91594         | -1.19421                 | 0.92286  | -1.32314 | 0.93378 | 0.91252                  | -1.17238                 | 0.94823  |
| -1.19855 | 0.91661 | 0.89592         | -1.07632                 | 0.91399  | -1.16459 | 0.91126 | 0.89051                  | -1.04799                 | 0.94237  |
| -1.01266 | 0.88343 | 0.86349         | -0.92228                 | 0.90576  | -0.9707  | 0.87451 | 0.85459                  | -0.88554                 | 0.93698  |
| -0.80424 | 0.83320 | 0.81439         | -0.7394                  | 0.89932  | -0.75332 | 0.81856 | 0.79992                  | -0.6929                  | 0.93280  |
| -0.57055 | 0.75788 | 0.74077         | -0.525                   | 0.89464  | -0.50958 | 0.73481 | 0.71808                  | -0.46747                 | 0.92980  |
| -0.30332 | 0.64717 | 0.63256         | -0.27162                 | 0.89144  | -0.23086 | 0.61342 | 0.59945                  | -0.20159                 | 0.92780  |
| 0.01300  | 0.49350 | 0.48236         | 0.035299                 |          | 0.099068 | 0.45063 | 0.44037                  | 0.11984                  |          |
|          |         |                 |                          | 12.96004 |          |         |                          |                          | 13.30361 |
|          |         |                 |                          | 0.925717 |          |         |                          |                          | 0.950258 |
| 31       | 32      | 33              | 34                       | 35       | 36       | 37      | 38                       | 39                       | 40       |
| Y^(6)    | P^(6)   | $P^{(6)}$ cond. | Logit P <sup>^</sup> (6) | β6       | Y^(7)    | P^(7)   | P <sup>^</sup> (7) cond. | Logit P <sup>^</sup> (7) | β7       |
|          |         |                 |                          |          |          |         |                          |                          |          |
|          |         |                 |                          |          |          |         |                          |                          |          |
| -1.8767  | 0.97710 | 0.97710         | -1.8767                  | 0.95026  | -1.87483 | 0.97702 | 0.97702                  | -1.87483                 | 0.96611  |
| -1.84444 | 0.97561 | 0.95327         | -1.50772                 | 0.98399  | -1.84204 | 0.97550 | 0.95307                  | -1.50556                 | 0.988425 |
| -1.78658 | 0.97270 | 0.95042         | -1.47669                 | 0.98157  | -1.78321 | 0.97252 | 0.95017                  | -1.47398                 | 0.986783 |
| -1.71637 | 0.96871 | 0.94653         | -1.43681                 | 0.97870  | -1.71183 | 0.96844 | 0.94618                  | -1.43336                 | 0.984829 |
| -1.65567 | 0.96482 | 0.94272         | -1.40041                 | 0.97629  | -1.65012 | 0.96444 | 0.94227                  | -1.39625                 | 0.983193 |
| -1.59523 | 0.96047 | 0.93848         | -1.36243                 | 0.97399  | -1.58867 | 0.95997 | 0.93791                  | -1.35752                 | 0.981631 |
| -1.52533 | 0.95481 | 0.93294         | -1.31641                 | 0.97146  | -1.5176  | 0.95414 | 0.93221                  | -1.31056                 | 0.97992  |
| -1.43327 | 0.94617 | 0.92450         | -1.25256                 | 0.96840  | -1.42401 | 0.94522 | 0.92349                  | -1.24538                 | 0.977844 |
| -1.3055  | 0.93157 | 0.91023         | -1.15824                 | 0.96466  | -1.29411 | 0.93010 | 0.90872                  | -1.14906                 | 0.975321 |
| -1.14275 | 0.90767 | 0.88688         | -1.02964                 | 0.96077  | -1.12864 | 0.90528 | 0.88447                  | -1.01772                 | 0.972706 |

| -0.94372 | 0.86846 | 0.84858 | -0.86174 | 0.95720  | -0.9263  | 0.86443 | 0.84456  | -0.84629 | 0.97033  |
|----------|---------|---------|----------|----------|----------|---------|----------|----------|----------|
| -0.72057 | 0.80863 | 0.79011 | -0.66281 | 0.95447  | -0.69942 | 0.80200 | 0.78357  | -0.64329 | 0.968523 |
| -0.47038 | 0.71925 | 0.70278 | -0.43029 | 0.95254  | -0.44505 | 0.70891 | 0.69262  | -0.40619 | 0.967264 |
| -0.18427 | 0.59110 | 0.57757 | -0.1564  | 0.95126  | -0.15417 | 0.57648 | 0.56323  | -0.12714 | 0.966455 |
| 0.154406 | 0.42340 | 0.41371 | 0.174329 |          | 0.190155 | 0.40605 | 0.39672  | 0.209577 |          |
|          |         |         | <u>.</u> | 13.52555 |          |         | <u>.</u> |          | 13.66934 |
|          |         |         |          | 0.96611  |          |         |          |          | 0.976381 |

| 41       | 42      | 43                       | 44                        | 45       | 46       | 47      | 48          | 49                       | 50       |
|----------|---------|--------------------------|---------------------------|----------|----------|---------|-------------|--------------------------|----------|
| Y^(8)    | P^(8)   | P <sup>^</sup> (8) cond. | Logit P <sup>^</sup> (8)  | β8       | Y^(9)    | P^(9)   | P^(9) cond. | Logit P <sup>^</sup> (9) | β9       |
|          |         |                          |                           |          |          |         |             |                          |          |
|          |         |                          |                           |          |          |         |             |                          |          |
| -1.87363 | 0.97696 | 0.97696                  | -1.87363                  | 0.97638  | -1.87284 | 0.97693 | 0.97693     | -1.87284                 | 0.98305  |
| -1.84048 | 0.97542 | 0.95295                  | -1.50415                  | 0.99130  | -1.83947 | 0.97537 | 0.95287     | -1.50324                 | 0.99316  |
| -1.78103 | 0.97240 | 0.95000                  | -1.47222                  | 0.99016  | -1.77962 | 0.97233 | 0.94989     | -1.47107                 | 0.99235  |
| -1.70889 | 0.96826 | 0.94595                  | -1.43112                  | 0.98880  | -1.70698 | 0.96814 | 0.94580     | -1.42966                 | 0.99139  |
| -1.64652 | 0.96419 | 0.94198                  | -1.39355                  | 0.98767  | -1.64419 | 0.96403 | 0.94178     | -1.3918                  | 0.99058  |
| -1.58442 | 0.95964 | 0.93754                  | -1.35433                  | 0.98659  | -1.58166 | 0.95943 | 0.93729     | -1.35226                 | 0.98982  |
| -1.5126  | 0.95370 | 0.93173                  | -1.30676                  | 0.98541  | -1.50935 | 0.95341 | 0.93141     | -1.30429                 | 0.98898  |
| -1.41801 | 0.94459 | 0.92283                  | -1.24071                  | 0.98398  | -1.41412 | 0.94418 | 0.92240     | -1.23768                 | 0.98797  |
| -1.28673 | 0.92913 | 0.90773                  | -1.14310                  | 0.98225  | -1.28194 | 0.92850 | 0.90708     | -1.13922                 | 0.98676  |
| -1.1195  | 0.90370 | 0.88288                  | -1.00998                  | 0.98047  | -1.11357 | 0.90266 | 0.88183     | -1.00494                 | 0.98551  |
| -0.915   | 0.86176 | 0.84191                  | -0.83625                  | 0.97886  | -0.90768 | 0.86001 | 0.84016     | -0.82972                 | 0.98440  |
| -0.68572 | 0.79761 | 0.77924                  | -0.63061                  | 0.97765  | -0.67683 | 0.79473 | 0.77639     | -0.62237                 | 0.98358  |
| -0.42864 | 0.70209 | 0.68592                  | -0.39055                  | 0.97683  | -0.41799 | 0.69762 | 0.68152     | -0.38039                 | 0.98304  |
| -0.13467 | 0.56693 | 0.55387                  | -0.10816                  | 0.97631  | -0.12201 | 0.56070 | 0.54777     | -0.09583                 | 0.98271  |
| 0.213315 | 0.39493 | 0.38583                  | 0.232432                  |          | 0.228347 | 0.38777 | 0.37882     | 0.247274                 |          |
|          |         |                          |                           | 13.76266 |          |         |             |                          | 13.82331 |
|          |         |                          |                           | 0.983047 |          |         |             |                          | 0.987379 |
| 51       | 52      | 53                       | 54                        | 55       |          |         |             |                          |          |
| Y^(10)   | P^(10)  | P^(10) cond.             | Logit P <sup>^</sup> (10) | β10      |          |         |             |                          |          |
|          |         |                          |                           |          |          |         |             |                          |          |
|          |         |                          |                           |          |          |         |             |                          |          |
| -1.87233 | 0.97690 | 0.97690                  | -1.87233                  | 0.98738  |          |         |             |                          |          |
| -1.83882 | 0.97534 | 0.95281                  | -1.50265                  | 0.99438  |          |         |             |                          |          |
| -1.7787  | 0.97228 | 0.94982                  | -1.47033                  | 0.99378  |          |         |             |                          |          |
| -1.70574 | 0.96806 | 0.94570                  | -1.42872                  | 0.99307  |          |         |             |                          |          |

0.99247

0.99191

-1.64267

-1.57987

0.96392

0.95929

0.94166

0.93713

-1.39066

-1.35091

| -1.50724 | 0.95322 | 0.93121 | -1.30269 | 0.99130  |
|----------|---------|---------|----------|----------|
| -1.41159 | 0.94392 | 0.92211 | -1.23571 | 0.99057  |
| -1.27882 | 0.92809 | 0.90665 | -1.13669 | 0.98969  |
| -1.10971 | 0.90198 | 0.88115 | -1.00167 | 0.98880  |
| -0.90291 | 0.85886 | 0.83902 | -0.82547 | 0.98801  |
| -0.67105 | 0.79283 | 0.77452 | -0.61701 | 0.98744  |
| -0.41107 | 0.69469 | 0.67865 | -0.37378 | 0.98708  |
| -0.11379 | 0.55665 | 0.54379 | -0.08781 | 0.98688  |
| 0.238116 | 0.38314 | 0.37429 | 0.256922 |          |
|          |         |         |          | 13.86275 |
|          |         |         |          | 0.990196 |

| Table of attempts to estimate the values of (a, β) civil status and passports/females |         |         |                          |         |            |               |          |                          |          |
|---------------------------------------------------------------------------------------|---------|---------|--------------------------|---------|------------|---------------|----------|--------------------------|----------|
| 1                                                                                     | 2       | 3       | 4                        | 5       | 6          | 7             | 8        | 9                        | 10       |
| x                                                                                     | lx      | lx(10)  | nQx                      | np10    | np10 cond. | logit(np10) Y | Ysx      | Ysx(10)                  | β        |
| 1                                                                                     | 0.98484 |         | 0.0158                   | 0.9842  |            | -2.06591      | -2.08691 |                          |          |
| 5                                                                                     | 0.98248 |         |                          |         |            | -2.01337      |          |                          |          |
| 10                                                                                    | 0.98123 | 0.98123 | 0.00221                  | 0.99779 | 0.98044    | -1.95727      | -1.97827 | -1.97827                 | 1        |
| 15                                                                                    | 0.98019 | 0.96179 | 0.00291                  | 0.99709 | 0.97758    | -1.88764      | -1.95078 | -1.61287                 | 0.37607  |
| 20                                                                                    | 0.97846 | 0.96009 | 0.00355                  | 0.99645 | 0.97696    | -1.87361      | -1.90803 | -1.59026                 | 0.38719  |
| 25                                                                                    | 0.97598 | 0.95766 | 0.00501                  | 0.99499 | 0.97553    | -1.84268      | -1.85228 | -1.55939                 | 0.42317  |
| 30                                                                                    | 0.97285 | 0.95459 | 0.00674                  | 0.99326 | 0.97383    | -1.80841      | -1.78943 | -1.52277                 | 0.45645  |
| 35                                                                                    | 0.96882 | 0.95064 | 0.00753                  | 0.99247 | 0.97305    | -1.7933       | -1.71815 | -1.47895                 | 0.44841  |
| 40                                                                                    | 0.96319 | 0.94511 | 0.01192                  | 0.98808 | 0.96876    | -1.71711      | -1.63224 | -1.42299                 | 0.52537  |
| 45                                                                                    | 0.95466 | 0.93674 | 0.01806                  | 0.98194 | 0.96274    | -1.62588      | -1.52358 | -1.34758                 | 0.59518  |
| 50                                                                                    | 0.94074 | 0.92308 | 0.02965                  | 0.97035 | 0.95137    | -1.48681      | -1.38237 | -1.24249                 | 0.68579  |
| 55                                                                                    | 0.91928 | 0.90203 | 0.05403                  | 0.94597 | 0.92746    | -1.27419      | -1.2163  | -1.10997                 | 0.81040  |
| 60                                                                                    | 0.88619 | 0.86956 | 0.10027                  | 0.89973 | 0.88213    | -1.0064       | -1.0262  | -0.94852                 | 0.93071  |
| 65                                                                                    | 0.83458 | 0.81891 | 0.15383                  | 0.84617 | 0.82962    | -0.79146      | -0.80922 | -0.75451                 | 0.95650  |
| 70                                                                                    | 0.75048 | 0.73639 | 0.26475                  | 0.73525 | 0.72087    | -0.47439      | -0.55059 | -0.51365                 | 1.01161  |
| 75                                                                                    | 0.62087 | 0.60922 | 0.39441                  | 0.60559 | 0.59375    | -0.18974      | -0.24662 | -0.22201                 | 1.00605  |
| 80                                                                                    | 0.44318 | 0.43486 | 1                        | 0       | 0          | #DIV/0!       | 0.114133 | 0.131022                 |          |
|                                                                                       |         |         |                          |         |            |               |          |                          | 9.612893 |
|                                                                                       |         |         |                          |         |            |               |          |                          | 0.686635 |
| 11                                                                                    | 12      | 13      | 14                       | 15      | 16         | 17            | 18       | 19                       | 20       |
| ¥^(2)                                                                                 | P^(2)   | P^(2)   | Logit P <sup>^</sup> (2) | β2      | Y^(3)      | P^(3)         | P^(3)    | Logit P <sup>^</sup> (3) | β3       |
|                                                                                       |         |         |                          |         |            |               |          |                          |          |
|                                                                                       |         |         |                          |         |            |               |          |                          |          |
| -1.99132                                                                              | 0.98170 | 0.98170 | -1.99132                 | 0.68664 | -1.97832   | 0.98123       | 0.98123  | -1.97832                 | 0.80628  |
| -1.97244                                                                              | 0.98101 | 0.96307 | -1.63049                 | 0.91854 | -1.95615   | 0.98040       | 0.96200  | -1.61567                 | 0.94979  |
| -1.94309                                                                              | 0.97989 | 0.96196 | -1.61519                 | 0.90752 | -1.92169   | 0.97903       | 0.96065  | -1.5976                  | 0.94293  |
| -1.9048                                                                               | 0.97832 | 0.96042 | -1.59458                 | 0.89348 | -1.87673   | 0.97710       | 0.95876  | -1.57314                 | 0.93413  |
| -1.86165                                                                              | 0.97642 | 0.95855 | -1.57048                 | 0.87820 | -1.82606   | 0.97472       | 0.95643  | -1.54437                 | 0.92450  |
| -1.81271                                                                              | 0.97405 | 0.95623 | -1.54205                 | 0.86166 | -1.76859   | 0.97173       | 0.95349  | -1.51023                 | 0.91401  |
| -1.75372                                                                              | 0.97090 | 0.95314 | -1.50625                 | 0.84297 | -1.69932   | 0.96766       | 0.94950  | -1.46699                 | 0.90211  |
| -1.67911                                                                              | 0.96637 | 0.94869 | -1.45863                 | 0.82140 | -1.61171   | 0.96171       | 0.94366  | -1.40915                 | 0.88832  |
| -1.58215                                                                              | 0.95947 | 0.94191 | -1.393                   | 0.79690 | -1.49785   | 0.95238       | 0.93451  | -1.32902                 | 0.87266  |
| -1.46812                                                                              | 0.94961 | 0.93224 | -1.31077                 | 0.77296 | -1.36396   | 0.93865       | 0.92104  | -1.22826                 | 0.85742  |
| -1.33759                                                                              | 0.93555 | 0.91843 | -1.2106                  | 0.75133 | -1.21068   | 0.91844       | 0.90120  | -1.10534                 | 0.84380  |
| -1.1886                                                                               | 0.91507 | 0.89833 | -1.08941                 | 0.73289 | -1.03574   | 0.88810       | 0.87143  | -0.95684                 | 0.83239  |

| -1.01102 | 0.88309 | 0.86693 | -0.93706 | 0.71752  | -0.82721 | 0.83949 | 0.82373 | -0.77092 | 0.82313  |
|----------|---------|---------|----------|----------|----------|---------|---------|----------|----------|
| -0.8023  | 0.83266 | 0.81743 | -0.74951 | 0.70588  | -0.58213 | 0.76210 | 0.74780 | -0.54346 | 0.81637  |
| -0.5546  | 0.75198 | 0.73822 | -0.51837 |          | -0.29126 | 0.64165 | 0.62960 | -0.26526 |          |
|          | ·       | ·       | ·        | 11.28789 |          | -       |         | ·        | 12.30783 |
|          |         |         |          | 0.806278 |          |         |         |          | 0.879131 |

| 21       | 22      | 23          | 24                       | 25       | 26       | 27      | 28                       | 29                       | 30       |
|----------|---------|-------------|--------------------------|----------|----------|---------|--------------------------|--------------------------|----------|
| Y^(4)    | P^(4)   | P^(4)       | Logit P <sup>^</sup> (4) | β4       | Y^(5)    | P^(5)   | P <sup>^</sup> (5) cond. | Logit P <sup>^</sup> (5) | β5       |
|          |         |             |                          |          |          |         |                          |                          |          |
|          |         |             |                          |          |          |         |                          |                          |          |
| -1.9704  | 0.98094 | 0.98094     | -1.9704                  | 0.87913  | -1.9655  | 0.98075 | 0.98075                  | -1.96550                 | 0.92428  |
| -1.94623 | 0.98001 | 0.96133     | -1.60665                 | 0.96883  | -1.94009 | 0.97977 | 0.96091                  | -1.60105                 | 0.980637 |
| -1.90865 | 0.97849 | 0.95983     | -1.58687                 | 0.96453  | -1.90058 | 0.97814 | 0.95932                  | -1.58022                 | 0.977934 |
| -1.85964 | 0.97632 | 0.95771     | -1.56002                 | 0.95900  | -1.84904 | 0.97583 | 0.95705                  | -1.55187                 | 0.974448 |
| -1.80438 | 0.97363 | 0.95507     | -1.52834                 | 0.95291  | -1.79095 | 0.97293 | 0.95421                  | -1.51835                 | 0.970606 |
| -1.74172 | 0.97021 | 0.95172     | -1.49061                 | 0.94627  | -1.72507 | 0.96924 | 0.95058                  | -1.47837                 | 0.966404 |
| -1.6662  | 0.96552 | 0.94712     | -1.44269                 | 0.93871  | -1.64567 | 0.96413 | 0.94557                  | -1.42748                 | 0.961615 |
| -1.57067 | 0.95857 | 0.94029     | -1.37838                 | 0.92994  | -1.54524 | 0.95650 | 0.93809                  | -1.35907                 | 0.956056 |
| -1.44652 | 0.94750 | 0.92944     | -1.28906                 | 0.91998  | -1.41471 | 0.94425 | 0.92607                  | -1.26393                 | 0.94974  |
| -1.30053 | 0.93093 | 0.91318     | -1.17658                 | 0.91032  | -1.26122 | 0.92570 | 0.90788                  | -1.14404                 | 0.94363  |
| -1.13341 | 0.90609 | 0.88882     | -1.03937                 | 0.90175  | -1.08552 | 0.89762 | 0.88034                  | -0.99784                 | 0.938231 |
| -0.94265 | 0.86822 | 0.85167     | -0.87388                 | 0.89465  | -0.88497 | 0.85445 | 0.83800                  | -0.82173                 | 0.933789 |
| -0.71528 | 0.80699 | 0.79161     | -0.66732                 | 0.88898  | -0.64592 | 0.78446 | 0.76936                  | -0.60235                 | 0.930275 |
| -0.44806 | 0.71015 | 0.69661     | -0.41561                 | 0.88493  | -0.36497 | 0.67479 | 0.66180                  | -0.33567                 | 0.927792 |
| -0.13091 | 0.56508 | 0.55431     | -0.10905                 |          | -0.03153 | 0.51576 | 0.50583                  | -0.01167                 |          |
|          |         |             |                          | 12.93993 |          |         |                          |                          | 13.33544 |
|          |         |             |                          | 0.92428  |          |         |                          |                          | 0.952531 |
| 31       | 32      | 33          | 34                       | 35       | 36       | 37      | 38                       | 39                       | 40       |
| Y^(6)    | P^(6)   | P^(6) cond. | Logit P^(6)              | β6       | Y^(7)    | P^(7)   | $P^{(7)}$ cond.          | Logit P <sup>^</sup> (7) | β7       |
|          |         |             |                          |          |          |         |                          |                          |          |
|          |         |             |                          |          |          |         |                          |                          |          |
| -1.96243 | 0.98064 | 0.98064     | -1.96243                 | 0.95253  | -1.96050 | 0.98056 | 0.98056                  | -1.9605                  | 0.97031  |
| -1.93624 | 0.97962 | 0.96065     | -1.59755                 | 0.98802  | -1.93382 | 0.97952 | 0.96048                  | -1.59535                 | 0.99267  |
| -1.89553 | 0.97793 | 0.95899     | -1.57605                 | 0.98633  | -1.89235 | 0.97779 | 0.95878                  | -1.57342                 | 0.99161  |
| -1.84242 | 0.97551 | 0.95662     | -1.54676                 | 0.98413  | -1.83824 | 0.97531 | 0.95636                  | -1.54354                 | 0.99023  |
| -1.78255 | 0.97248 | 0.95365     | -1.51209                 | 0.98171  | -1.77726 | 0.97220 | 0.95330                  | -1.50814                 | 0.98871  |
| -1.71466 | 0.96861 | 0.94985     | -1.47068                 | 0.97906  | -1.70810 | 0.96821 | 0.94939                  | -1.46582                 | 0.98704  |
| -1.63282 | 0.96323 | 0.94458     | -1.41791                 | 0.97603  | -1.62474 | 0.96265 | 0.94394                  | -1.41186                 | 0.98514  |
| -1.52932 | 0.95515 | 0.93666     | -1.3469                  | 0.97252  | -1.51931 | 0.95429 | 0.93574                  | -1.33921                 | 0.98292  |

| -1.39481 | 0.94211 | 0.92387 | -1.24807 | 0.96853  | -1.38229 | 0.94073 | 0.92245 | -1.23803 | 0.98041  |
|----------|---------|---------|----------|----------|----------|---------|---------|----------|----------|
| -1.23663 | 0.92225 | 0.90439 | -1.12348 | 0.96467  | -1.22115 | 0.92000 | 0.90212 | -1.11048 | 0.97798  |
| -1.05555 | 0.89198 | 0.87471 | -0.97162 | 0.96127  | -1.03670 | 0.88829 | 0.87103 | -0.95503 | 0.97584  |
| -0.84887 | 0.84524 | 0.82887 | -0.78883 | 0.95848  | -0.82616 | 0.83920 | 0.82289 | -0.76804 | 0.97408  |
| -0.60251 | 0.76942 | 0.75452 | -0.56143 | 0.95628  | -0.57521 | 0.75959 | 0.74482 | -0.53559 | 0.97271  |
| -0.31298 | 0.65157 | 0.63896 | -0.28542 | 0.95474  | -0.28027 | 0.63658 | 0.62420 | -0.25371 | 0.97174  |
| 0.030652 | 0.48468 | 0.47529 | 0.049452 |          | 0.06978  | 0.46517 | 0.45613 | 0.087972 |          |
|          |         |         |          | 13.58429 |          |         |         | 13.74139 |          |
|          |         |         |          | 0.970307 |          |         |         |          | 0.981528 |

| 41       | 42      | 43                        | 44                        | 45       | 46       | 47      | 48          | 49          | 50       |
|----------|---------|---------------------------|---------------------------|----------|----------|---------|-------------|-------------|----------|
| Y^(8)    | P^(8)   | P^(8) cond.               | Logit P^(8)               | β8       | Y^(9)    | P^(9)   | P^(9) cond. | Logit P^(9) | β9       |
|          |         |                           |                           |          |          |         |             |             |          |
|          |         |                           |                           |          |          |         |             |             |          |
| -1.95928 | 0.98052 | 0.98052                   | -1.95928                  | 0.98153  | -1.95851 | 0.98049 | 0.98049     | -1.95851    | 0.98863  |
| -1.93229 | 0.97946 | 0.96038                   | -1.59396                  | 0.99561  | -1.93133 | 0.97942 | 0.96031     | -1.59308    | 0.99747  |
| -1.89034 | 0.97770 | 0.95865                   | -1.57177                  | 0.99494  | -1.88907 | 0.97765 | 0.95857     | -1.57072    | 0.99706  |
| -1.83561 | 0.97519 | 0.95619                   | -1.54151                  | 0.99409  | -1.83395 | 0.97511 | 0.95608     | -1.54022    | 0.99652  |
| -1.77392 | 0.97202 | 0.95308                   | -1.50564                  | 0.99313  | -1.77181 | 0.97190 | 0.95294     | -1.50406    | 0.99594  |
| -1.70396 | 0.96795 | 0.94909                   | -1.46275                  | 0.99209  | -1.70135 | 0.96779 | 0.94890     | -1.46081    | 0.99529  |
| -1.61964 | 0.96229 | 0.94354                   | -1.40804                  | 0.99090  | -1.61641 | 0.96205 | 0.94328     | -1.40561    | 0.99455  |
| -1.51299 | 0.95373 | 0.93515                   | -1.33434                  | 0.98951  | -1.50899 | 0.95338 | 0.93478     | -1.33125    | 0.99369  |
| -1.37438 | 0.93984 | 0.92153                   | -1.23168                  | 0.98794  | -1.36938 | 0.93928 | 0.92095     | -1.22765    | 0.99271  |
| -1.21138 | 0.91855 | 0.90065                   | -1.10224                  | 0.98641  | -1.2052  | 0.91762 | 0.89971     | -1.09702    | 0.99176  |
| -1.02479 | 0.88591 | 0.86865                   | -0.94452                  | 0.98507  | -1.01726 | 0.88438 | 0.86712     | -0.93786    | 0.99092  |
| -0.81182 | 0.83530 | 0.81902                   | -0.75487                  | 0.98396  | -0.80275 | 0.83279 | 0.81654     | -0.74653    | 0.99023  |
| -0.55797 | 0.75323 | 0.73856                   | -0.51924                  | 0.98310  | -0.54706 | 0.74916 | 0.73454     | -0.50889    | 0.98968  |
| -0.25962 | 0.62697 | 0.61475                   | -0.23367                  | 0.98249  | -0.24655 | 0.62084 | 0.60872     | -0.22098    | 0.98929  |
| 0.094475 | 0.45290 | 0.44408                   | 0.112312                  |          | 0.110099 | 0.44517 | 0.43649     | 0.127719    |          |
|          |         |                           |                           | 13.84077 |          |         |             |             | 13.90371 |
|          |         |                           |                           | 0.988626 |          |         |             |             | 0.993122 |
| 51       | 52      | 53                        | 54                        | 55       |          |         |             |             |          |
| Y^(10)   | P^(10)  | P <sup>^</sup> (10) cond. | Logit P <sup>^</sup> (10) | β10      |          |         |             |             |          |
|          |         |                           |                           |          |          |         |             |             |          |
|          |         |                           |                           |          |          |         |             |             |          |
| -1.95802 | 0.98047 | 0.98047                   | -1.95802                  | 0.99312  |          |         |             |             |          |
| -1.93072 | 0.97940 | 0.96027                   | -1.59252                  | 0.99864  |          |         |             |             |          |
| -1.88826 | 0.97761 | 0.95852                   | -1.57006                  | 0.99839  |          |         |             |             |          |
| -1.83289 | 0.97505 | 0.95601                   | -1.53941                  | 0.99807  |          |         |             |             |          |
| -1.77047 | 0.97183 | 0.95285                   | -1.50306                  | 0.99771  |          |         |             |             |          |
| -1.69969 | 0.96768 | 0.94879                   | -1.45958                  | 0.99732  |          |         |             |             |          |
| -1.61437 | 0.96190 | 0.94311                   | -1.40408                  | 0.99686  |          |         |             |             |          |
| -1.50646 | 0.95315 | 0.93454                   | -1.32929                  | 0.99634  |          |         |             |             |          |
| -1.36621 | 0.93891 | 0.92058                   | -1.22509                  | 0.99573  |          |         |             |             |          |
| -1.20129 | 0.91702 | 0.89911                   | -1.09371                  | 0.99515  |          |         |             |             |          |
| -1.0125  | 0.88340 | 0.86614                   | -0.93364                  | 0.99463  |          |         |             |             |          |
| -0.79701 | 0.83118 | 0.81495                   | -0.74124                  | 0.99420  |          |         |             |             |          |
| -0.54015 | 0.74655 | 0.73197                   | -0.50232                  | 0.99385  |          |         |             |             |          |
| -0.23828 | 0.61693 | 0.60489                   | -0.21293                  | 0.99361  |          |         |             |             |          |
| 0.119995 | 0.44029 | 0.4316897                 | 0.13748                   |          |          |         |             |             |          |

| 13.94361 |
|----------|
| 0.995972 |

| A go group |       | Jordanian |       | N     | Total  |       |       |
|------------|-------|-----------|-------|-------|--------|-------|-------|
| Age group  | Males | females   | total | Males | Female | total | Total |
| 0          | 1049  | 812       | 1861  | 263   | 188    | 451   | 2312  |
| 1          | 639   | 500       | 1139  | 152   | 118    | 270   | 1409  |
| 2          | 194   | 183       | 377   | 39    | 38     | 77    | 454   |
| 3          | 158   | 120       | 278   | 40    | 36     | 76    | 354   |
| 4          | 125   | 75        | 200   | 20    | 26     | 46    | 246   |
| 5-9        | 475   | 287       | 762   | 103   | 88     | 191   | 953   |
| 10-14      | 324   | 212       | 536   | 75    | 49     | 124   | 660   |
| 15-19      | 475   | 216       | 691   | 93    | 34     | 127   | 818   |
| 20-24      | 668   | 242       | 910   | 146   | 39     | 185   | 1095  |
| 25-29      | 527   | 227       | 754   | 146   | 48     | 194   | 948   |
| 30-34      | 572   | 292       | 864   | 167   | 42     | 209   | 1073  |
| 35-39      | 706   | 273       | 979   | 113   | 88     | 201   | 1180  |
| 40-44      | 1007  | 464       | 1471  | 191   | 82     | 273   | 1744  |
| 45-49      | 1338  | 538       | 1876  | 180   | 108    | 288   | 2164  |
| 50-54      | 1751  | 781       | 2532  | 295   | 168    | 463   | 2995  |
| 55-59      | 1871  | 792       | 2663  | 288   | 156    | 444   | 3107  |
| 60-64      | 2315  | 1188      | 3503  | 303   | 198    | 501   | 4004  |
| 65-69      | 2201  | 1173      | 3374  | 344   | 208    | 552   | 3926  |
| 70-74      | 3024  | 1651      | 4675  | 482   | 255    | 737   | 5412  |
| 75-79      | 2269  | 1282      | 3551  | 317   | 208    | 525   | 4076  |
| 80-84      | 1662  | 1148      | 2810  | 253   | 192    | 445   | 3255  |
| 85+        | 1685  | 1353      | 3038  | 289   | 252    | 541   | 3579  |
| Total      | 25035 | 13809     | 38844 | 4299  | 2621   | 6920  | 45764 |

# Table 7: Mortality by age group, sex and nationality for 2015

#### **Life Tables Functions:**

X: Age

n: The length of the group

 $_{n}M_{x}$ : The number of corrected deaths at age(x)

 $nl_{x}$  . The number of years the regiment lives between age x, x+n.

Lx : The number of survivors at age (x).

Tx: The total number of years the regiment lives after age (x).

ex: Life expectancy at age x.

 $Y_{x}^{s}$ : The logit value of survival from birth to age (x) in model life tables.

 $_{x}\acute{Y}$  :The logit value of the probability of survival from birth to age (x) in Jordan.

- $\alpha$ : The general level of death.
- $\beta$ : The strength of the relationship between childhood mortality and adult mortality
|           | Sumborship probability, 5 <sup>5</sup> 2 , x + 4, for morship level: |         |         |          |         |         |          |         |
|-----------|----------------------------------------------------------------------|---------|---------|----------|---------|---------|----------|---------|
| T         | 1                                                                    | ,       | J       | 1        | J       | 6       | 1        | ,       |
| 0         | 0.78598                                                              | 0.80839 | 0.82791 | 0.84514  | 0.86050 | 0.87431 | 0.88685  | 0.89827 |
| 5         | 0.94170                                                              | 0.94685 | 0.95148 | 0.95568  | 0.95953 | 0.96306 | 0.96633  | 0.96937 |
| 0         | 0.94345                                                              | 0.94829 | 0.95266 | 0.95662  | 0.96024 | 0.96359 | 0.96667  | 0.96956 |
| 5         | 0.92179                                                              | 0.92836 | 0.93432 | 0.93971  | 0.94466 | 0.94921 | 0.95343  | 0.95735 |
| 0         | 0.90238                                                              | 0.91067 | 0.91815 | 0.92495  | 0.93117 | 0.93690 | 0 94220  | 0 94712 |
|           | 0.88887                                                              | 0.89838 | 0.90695 | 0.91475  | 0.92187 | 0 92844 | 0 93457  | 0 94017 |
| )         | 0.87123                                                              | 0.88219 | 0.89209 | 0.90108  | 0.90932 | 0.91690 | 0 92 391 | 0.93044 |
| 5         | 0 84849                                                              | 0 86118 | 0 87261 | 0 88302  | 0.89255 | 0.90132 | 0.90944  | 0.91699 |
| 5         | 0 87417                                                              | 0.83840 | 0.85122 | 0 \$6287 | 0 87155 | 0 88336 | 0 80746  | 0.00000 |
|           | 0 70784                                                              | 0.80860 | 0.87797 | 0.83505  | 0.87355 | 0.85980 | 0.85240  | 0.97939 |
|           | 0.79284                                                              | 0.80809 | 0.02297 | 0.83393  | 0.04/04 | 0.83680 | 0.00074  | 0.8/838 |
|           | 0.75188                                                              | 0.76934 | 0.78352 | 0.80001  | 0.81329 | 0.82552 | 0.83684  | 0.84736 |
|           | 0.09320                                                              | 0.71503 | 0.73291 | 0./4918  | 0.76410 | 0.77785 | 0.79061  | 0.80246 |
|           | 0.61357                                                              | 0.63658 | 0.03732 | 0.6/622  | 0.69354 | 0.70951 | 0.72431  | 0.73809 |
|           | 0.51//3                                                              | 0.54303 | 0.36394 | 0.380/0  | 0.60585 | 0.62347 | 0.63983  | 0.65504 |
|           | 0.39621                                                              | 0.42347 | 0.44803 | 0.47062  | 0.49123 | 0.51025 | 0.52797  | 0.54445 |
| +         | 0.25310                                                              | 0.26885 | 0.28214 | 0.29420  | 0.30500 | 0.31498 | 0.32449  | 0.33364 |
|           | ,                                                                    | 10      |         | 12       | п       | 14      | B        | 16      |
| harrowner | 0.90877                                                              | 0.91845 | 0.92741 | 0.93573  | 0.94494 | 0.95280 | 0.95942  | 0.96561 |
| 5         | 0.97219                                                              | 0.97484 | 0.97732 | 0.97966  | 0.98222 | 0.98435 | 0.98620  | 0.98799 |
|           | 0.97223                                                              | 0.97474 | 0.97710 | 0.97932  | 0.98161 | 0.98360 | 0.98535  | 0.98706 |
|           | 0.96100                                                              | 0.96442 | 0.96765 | 0.97067  | 0.97353 | 0.97626 | 0.97869  | 0.98107 |
| 1         | 0.95172                                                              | 0.95602 | 0.96006 | 0.96386  | 0.96740 | 0.97083 | 0.97392  | 0.97692 |
|           | 0.94544                                                              | 0.95038 | 0.95501 | 0.95938  | 0.96343 | 0.96738 | 0.97094  | 0 97438 |
|           | 0.93652                                                              | 0.94222 | 0.94758 | 0.95261  | 0.95730 | 0.96183 | 0.96591  | 0.96987 |
|           | 0.92403                                                              | 0.93064 | 0.93684 | 0.94267  | 0.94815 | 0.95328 | 0.95793  | 0.96246 |
| )         | 0.90878                                                              | 0.91616 | 0.92309 | 0.92962  | 0.93584 | 0.94140 | 0.94643  | 0.95141 |
| E         | 0 88719                                                              | 0.89544 | 0 90119 | 0.91048  | 0.91761 | 0.97158 | 0.92903  | 0.93457 |
|           | 0.85718                                                              | 0 86618 | 0 87500 | 0 88313  | 0 89119 | 0 89760 | 0 90354  | 0.90956 |
|           | 0.81755                                                              | 0.87194 | 0.81170 | 0 84789  | 0.85101 | 0.85904 | 0.86560  | 0.97749 |
|           | 0.01333                                                              | 0.76301 | 0 77434 | 0.78501  | 0.05195 | 0.80151 | 0.80307  | 0 81907 |
| ********* | 0.13097                                                              | 0.70301 | 0.77434 | 0.76501  | 0.75340 | 0.00333 | 0.01117  | 0.01902 |
|           | 0.00924                                                              | 0.68230 | 0.09510 | 0.70091  | 0./182/ | 0.72714 | 0.73332  | 0./441/ |
|           | 0.55985                                                              | 0.57427 | 0.36780 | 0.00009  | 0.01291 | 0.02244 | 0.03147  | 0.64085 |
| ·+        | 0.34255                                                              | 0.33131 | 0.36002 | 0.36872  | 0.37769 | 0.38544 | 0.34303  | 0.40117 |
|           | 17                                                                   | 18      | 19      | 20       | 21      | 22      | 2)       | 24      |
|           | 0.97174                                                              | 0.97737 | 0.98257 | 0.98738  | 0.99139 | 0.99433 | 0.99665  | 0.99831 |
| 5         | 0.98969                                                              | 0.99132 | 0.99289 | 0.99437  | 0.99570 | 0.99688 | 0.99794  | 0.99880 |
| 0         | 0.98872                                                              | 0.99031 | 0.99184 | 0.99331  | 0.99467 | 0.99598 | 0.99720  | 0.99825 |
| 5         | 0.98338                                                              | 0.98561 | 0.98775 | 0.98982  | 0.99181 | 0.99375 | 0.99557  | 0.99720 |
| 0         | 0.97982                                                              | 0.98262 | 0.98531 | 0.98787  | 0.99033 | 0.99269 | 0.99490  | 0.99682 |
| C         | 0 97770                                                              | 0.98089 | 0.98395 | 0.98687  | 0.98958 | 0.99720 | 0 99462  | 0 99670 |
| 0         | 0 97370                                                              | 0 97739 | 0 98093 | 0 98417  | 0 98741 | 0.99053 | 0 99340  | 0.99590 |
| 6         | 0.96688                                                              | 0.97117 | 0.97531 | 0 07070  | 0.08797 | 0.98677 | 0.99046  | 0 99179 |
| 0         | 0.96633                                                              | 0.96114 | 0.96587 | 0.97038  | 0.90292 | 0.93077 | 0.98427  | 0.99996 |
|           | 0.93002                                                              | 0.96114 | 0.96362 | 0.97038  | 0.96090 | 0.96700 | 0.07344  | 0.98890 |
|           | 0.93998                                                              | 0.94541 | 0.93073 | 0.93399  | 0.90090 | 0.90700 | 0.97344  | 0.98004 |
|           | 0.91563                                                              | 0.92170 | 0.92774 | 0.93371  | 0.93946 | 0.94/03 | 0.93330  | 0.96425 |
|           | 0.87938                                                              | 0.88634 | 0.89332 | 0.90025  | 0.90724 | 0.91004 | 0.92728  | 0.93927 |
| ******    | 0.82702                                                              | 0.83514 | 0.84333 | 0.85150  | 0.85990 | 0.87150 | 0.88493  | 0.90051 |
|           | 0.75305                                                              | 0.76211 | 0.77127 | 0.78047  | 0.79012 | 0.80383 | 0.82002  | 0.83932 |
| A         | 0.65050                                                              | 0.66039 | 0.67044 | 0.68059  | 0.69132 | 0.70703 | 0.72585  | 0.74882 |
| 5+*       | 0.40982                                                              | 0.41897 | 0.42857 | 0.43857  | 0.44915 | 0.46356 | 0.48056  | 0.50071 |

TABLE 270. MALE FIVE-YEAR SURVIVORSHIP PROBABILITIES,  ${}_{5}S_{x, x+4}$ . West model

\* Value listed for age 75 + is T(80)/T(75).

| 2    | Survivarship probability, $y_{x,x}^{y}$ + 4. for mariality level: |         |         |         |         |         |         |         |
|------|-------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|
| 7    | 1                                                                 | 2       | ,       |         | 3       | 6       | 7       | 8       |
| 0    | 0.73701                                                           | 0.76223 | 0.78468 | 0.80487 | 0.82317 | 0.83989 | 0.85524 | 0.86943 |
| 5    | 0.87354                                                           | 0.88458 | 0.89459 | 0.90373 | 0.91213 | 0.91989 | 0.92710 | 0.93383 |
| 10   | 0.85757                                                           | 0.86974 | 0.88079 | 0.89087 | 0.90016 | 0.90875 | 0.91674 | 0.92419 |
| 15   | 0.82858                                                           | 0.84293 | 0.85598 | 0.86792 | 0.87892 | 0.88911 | 0.89860 | 0.90745 |
| 20   | 0.80498                                                           | 0.82108 | 0.83574 | 0.84918 | 0.86158 | 0.87307 | 0.88377 | 0.89377 |
| 25   | 0.78413                                                           | 0.80173 | 0.81775 | 0.83247 | 0.84606 | 0.85865 | 0.87039 | 0.88138 |
| 30   | 0.76600                                                           | 0.78472 | 0.80177 | 0.81744 | 0.83189 | 0.84530 | 0.85782 | 0.86953 |
| 35   | 0.75174                                                           | 0.77092 | 0.78842 | 0.80448 | 0.81930 | 0.83306 | 0.84590 | 0.85792 |
| 40   | 0.72673                                                           | 0.74670 | 0.76493 | 0.78172 | 0.79723 | 0.81166 | 0.82511 | 0.83772 |
| 45   | 0.67504                                                           | 0.69729 | 0.71769 | 0.73648 | 0.75392 | 0.77016 | 0.78534 | 0.79959 |
| 50   | 0.59196                                                           | 0.61775 | 0.64152 | 0.66351 | 0.68401 | 0.70317 | 0.72117 | 0.73811 |
| 55   | 0.48197                                                           | 0.51126 | 0.53842 | 0.56375 | 0.58747 | 0.60977 | 0.63082 | 0.65071 |
| 60   | 0.36171                                                           | 0.39190 | 0.42025 | 0.44691 | 0.47209 | 0.49591 | 0.51854 | 0.54002 |
| 65   | 0.23628                                                           | 0.26411 | 0.29072 | 0.31598 | 0.34011 | 0.36313 | 0.38517 | 0.40621 |
| 70+* | 0.10087                                                           | 0.11236 | 0.12302 | 0.13299 | 0.14246 | 0.15156 | 0.16046 | 0.16919 |
|      | ,                                                                 | 10      | п       | 12      | н       | 14      | 13      | 16      |
| 0    | 0.88258                                                           | 0.89483 | 0.90628 | 0.91701 | 0.92732 | 0.93824 | 0.94783 | 0.95677 |
| 5    | 0.94012                                                           | 0.94603 | 0.95159 | 0.95684 | 0.96180 | 0.96683 | 0.97147 | 0.97581 |
| 10   | 0.93117                                                           | 0.93773 | 0.94392 | 0.94976 | 0.95523 | 0.96016 | 0.96550 | 0.97050 |
| 15   | 0.91575                                                           | 0.92355 | 0.93091 | 0.93787 | 0.94436 | 0.94969 | 0.95618 | 0.96229 |
| 20   | 0.90314                                                           | 0.91197 | 0.92029 | 0.92817 | 0.93552 | 0.94148 | 0.94875 | 0.95564 |
| 25   | 0.89169                                                           | 0.90140 | 0.91056 | 0.91923 | 0.92731 | 0.93410 | 0.94188 | 0.94929 |
| 30   | 0.88054                                                           | 0.89090 | 0.90066 | 0.90992 | 0.91857 | 0.92604 | 0.93403 | 0.94174 |
| 35   | 0.86920                                                           | 0.87984 | 0.88988 | 0.89938 | 0.90826 | 0.91600 | 0.92386 | 0.93158 |
| 40   | 0.84957                                                           | 0.86074 | 0.87130 | 0.88128 | 0.89064 | 0.89873 | 0.90671 | 0.91466 |
| 45   | 0.81301                                                           | 0.82567 | 0.83766 | 0.84902 | 0.85966 | 0.86882 | 0.87767 | 0.88662 |
| 50   | 0.75410                                                           | 0.76924 | 0.78360 | 0.79727 | 0.81007 | 0.82102 | 0.83154 | 0.84224 |
| 55   | 0.66955                                                           | 0.68747 | 0.70451 | 0.72077 | 0.73606 | 0.74893 | 0.76137 | 0.77411 |
| 60   | 0.56051                                                           | 0.58004 | 0.59871 | 0.61658 | 0.63345 | 0.64728 | 0.66090 | 0.67498 |
| 65   | 0.42644                                                           | 0.44579 | 0.46439 | 0.48228 | 0.49922 | 0.51295 | 0.52649 | 0.54065 |
| 70+* | 0.17790                                                           | 0.18656 | 0.19528 | 0.20406 | 0.21281 | 0.22061 | 0.22861 | 0.23717 |
|      | 17                                                                | 18      | 19      | 20      | 21      | 22      | 23      | 24      |
| 0    | 0.96490                                                           | 0.97232 | 0.97911 | 0.98539 | 0.99055 | 0.99406 | 0.99671 | 0.99848 |
| 5    | 0.97985                                                           | 0.98362 | 0.98716 | 0.99047 | 0.99342 | 0.99565 | 0.99742 | 0.99871 |
| 10   | 0.97518                                                           | 0.97955 | 0.98366 | 0.98749 | 0.99119 | 0.99412 | 0.99644 | 0.99816 |
| 15   | 0.96802                                                           | 0.97338 | 0.97842 | 0.98314 | 0.98783 | 0.99188 | 0.99499 | 0.99734 |
| 20   | 0.96213                                                           | 0.96825 | 0.97400 | 0.97943 | 0.98483 | 0.98966 | 0.99347 | 0.99643 |
| 25   | 0.95635                                                           | 0.96206 | 0.96941 | 0.97544 | 0.98145 | 0.98682 | 0.99137 | 0.99507 |
| 30   | 0.94917                                                           | 0.95630 | 0.96313 | 0.96965 | 0.97615 | 0.98220 | 0.98773 | 0.99248 |
| 35   | 0.93912                                                           | 0.94645 | 0.95357 | 0.96043 | 0.96725 | 0.97425 | 0.98105 | 0.98732 |
| 40   | 0.92255                                                           | 0.93032 | 0.93796 | 0.94539 | 0.95285 | 0.96125 | 0.96985 | 0.97832 |
| 45   | 0.89557                                                           | 0.90449 | 0.91333 | 0.92201 | 0.93082 | 0.94136 | 0.95255 | 0.96413 |
| 50   | 0.85305                                                           | 0.86391 | 0.87474 | 0.88547 | 0.89642 | 0.91015 | 0.92514 | 0.94119 |
| 55   | 0.78709                                                           | 0.80023 | 0.81343 | 0,82660 | 0.84018 | 0.85797 | 0.87792 | 0.9000  |
| 60   | 0.68943                                                           | 0.70420 | 0.71917 | 0.73423 | 0.75006 | 0.77185 | 0.79694 | 0.82600 |
| 65   | 0.55531                                                           | 0.57042 | 0.58589 | 0.60160 | 0.61835 | 0.64264 | 0.67130 | 0.7059  |
| 70+* | 0 24628                                                           | 0.25591 | 0.26603 | 0.27657 | 0.28790 | 0.30322 | 0.32100 | 0.3419  |

TABLE 274. Female 10-year survivorship probabilities,  ${}_{10}S_{x, x+4}$ . West model

\* Value listed for age 70+ is T(80)/T(70).

## Table 279. Logit transformation of the complement of the probability of surviving, 1-I(x), North model

# TABLE 280. LOGIT TRANSFORMATION OF THE COMPLEMENT OF THE PROBABILITY OF SURVIVING, $1-I(\boldsymbol{x}$ ), South model

| 17 | Logie of<br>1-Ka) | Ąŗ | Logit of<br>1-Rx) | 47 | Logit of<br>1-Kx) |
|----|-------------------|----|-------------------|----|-------------------|
| 1  | -1.2556           | 34 | -0.6434           | 67 | -0.0533           |
| 2  | -1.1332           | 35 | -0.6312           | 68 | -0.0184           |
| 3  | -1.0655           | 36 | -0.6189           | 69 | 0.0187            |
| 4  | -1.0177           | 37 | -0.6065           | 70 | 0.0582            |
| 5  | -0.9826           | 38 | -0.5939           | 71 | 0.1003            |
| 6  | -0.9601           | 39 | -0.5812           | 72 | 0.1450            |
| 7  | -0.9406           | 40 | -0.5684           | 73 | 0.1927            |
| 8  | -0.9237           | 41 | -0.5554           | 74 | 0.2436            |
| 9  | -0.9093           | 42 | -0.5423           | 75 | 0.2979            |
| 10 | -0.8968           | 43 | -0.5291           | 76 | 0.3559            |
| 11 | -0.8859           | 44 | -0.5157           | 77 | 0.4180            |
| 12 | -0.8763           | 45 | -0.5023           | 78 | 0.4845            |
| 13 | -0.8677           | 46 | -0.4886           | 79 | 0.5558            |
| 14 | -0.8596           | 47 | -0.4746           | 80 | 0.6325            |
| 15 | -0.8517           | 48 | -0.4605           | 81 | 0.7152            |
| 16 | -0.8424           | 49 | -0.4459           | 82 | 0.8044            |
| 17 | -0.8329           | 50 | -0.4310           | 83 | 0.9011            |
| 18 | -0.8233           | 51 | -0.4157           | 84 | 1.0060            |
| 19 | -0.8134           | 52 | -0.3999           | 85 | 1.1202            |
| 20 | -0.8033           | 53 | -0.3836           | 86 | 1.2451            |
| 21 | -0.7928           | 54 | -0.3666           | 87 | 1.3819            |
| 22 | -0.7821           | 55 | -0.3490           | 88 | 1.5324            |
| 23 | -0.7712           | 56 | -0.3306           | 89 | 1.6984            |
| 24 | -0.7601           | 57 | -0.3114           | 90 | 1.8821            |
| 25 | -0.7489           | 58 | -0.2913           | 91 | 2.0859            |
| 26 | -0.7376           | 59 | -0.2703           | 92 | 2.3125            |
| 27 | -0.7262           | 60 | -0.2481           | 93 | 2,5650            |
| 28 | -0.7146           | 61 | -0.2247           | 94 | 2.8469            |
| 29 | -0.7030           | 62 | -0.2000           | 95 | 3,1619            |
| 30 | -0.6912           | 63 | -0.1740           | 96 | 3.5143            |
| 31 | -0.6794           | 64 | -0.1464           | 97 | 3,9087            |
| 32 | -0.6676           | 65 | -0.1172           | 98 | 4.3503            |
| 33 | -0.6556           | 66 | -0.0862           | 99 | 4.8450            |

| 47 | Logit of<br>1-4x) | Ŧ   | Logis of<br>1-l(x) | 17 | Logit of<br>1-Ks) |
|----|-------------------|-----|--------------------|----|-------------------|
| 1  | -1.0807           | 34  | -0.6252            | 67 | -0.1163           |
| 2  | -0.9376           | 35  | -0.6165            | 68 | -0.0806           |
| 3  | -0.8807           | 36  | -0.6077            | 69 | -0.0423           |
| 4  | -0.8524           | 37  | -0.5988            | 70 | -0.0013           |
| 5  | -0.8369           | 38  | -0.5898            | 71 | 0.0427            |
| 6  | -0.8265           | 39  | -0.5807            | 72 | 0.0898            |
| 7  | -0.8176           | 40  | -0.5715            | 73 | 0.1404            |
| 8  | -0.8100           | 41  | -0.5621            | 74 | 0.1946            |
| 9  | -0.8034           | 42  | -0.5526            | 75 | 0.2527            |
| 10 | -0.7976           | 43  | -0.5429            | 76 | 0.3153            |
| 11 | -0.7925           | 44  | -0.5331            | 77 | 0.3824            |
| 12 | -0.7879           | 45  | -0.5229            | 78 | 0.4547            |
| 13 | -0.7833           | 46  | 0.5126             | 79 | 0.5327            |
| 14 | -0.7789           | 47  | -0.5018            | 80 | 0.6169            |
| 15 | 0.7743            | 48  | -0.4908            | 81 | 0,7081            |
| 16 | -0.7685           | 49  | -0.4793            | 82 | 0.8071            |
| 17 | -0.7623           | 50  | -0.4674            | 83 | 0.9150            |
| 18 | -0.7558           | 51  | -0.4549            | 84 | 1.0329            |
| 19 | -0.7489           | 52  | -0.4419            | 85 | 1.1623            |
| 20 | -0.7418           | \$3 | -0.4282            | 86 | 1.3047            |
| 21 | -0.7342           | 54  | -0.4138            | 87 | 1.4622            |
| 22 | -0.7264           | 55  | -0.3986            | 88 | 1.6369            |
| 23 | -0.7183           | 56  | -0.3825            | 89 | 1.8315            |
| 24 | -0.7101           | 57  | -0.3654            | 90 | 2.0489            |
| 25 | -0.7017           | 58  | -0.3473            | 91 | 2.2926            |
| 26 | -0.6933           | 59  | -0.3279            | 92 | 2.5662            |
| 27 | -0.6849           | 60  | -0.3073            | 93 | 2.8742            |
| 28 | -0.6764           | 61  | -0.2853            | 94 | 3.2213            |
| 29 | -0.6678           | 62  | -0.2617            | 95 | 3.6128            |
| 30 | -0.6592           | 63  | -0.2365            | 96 | 4.0547            |
| 31 | -0.6508           | 64  | -0.2095            | 97 | 4.5537            |
| 32 | -0.6423           | 65  | -0.1806            | 98 | 5.1174            |
| 33 | -0.6337           | 66  | -0.1495            | 99 | 5.7541            |

## Table 281. Logit transformation of the complement of the probability of surviving, 1 - I(x), East model

## Table 282. Logit transformation of the complement of the probability of surviving, $1-\ell(x)$ . West model

| r  | Logit of<br>1-H(x) | 4r | Logit of<br>1-NA) | Ť  | Logit of<br>1-k(x) |
|----|--------------------|----|-------------------|----|--------------------|
| I  | -1.0827            | 34 | -0.6757           | 67 | -0.0603            |
| 2  | -0.9899            | 35 | -0.6651           | 68 | -0.0199            |
| 3  | -0.9540            | 36 | -0.6543           | 69 | 0.0230             |
| 4  | -0.9315            | 37 | -0.6434           | 70 | 0.0686             |
| 5  | -0.9163            | 38 | -0.6322           | 71 | 0.1171             |
| 6  | -0.9049            | 39 | -0.6210           | 72 | 0.1686             |
| 7  | -0.8950            | 40 | -0.6096           | 73 | 0.2235             |
| 8  | -0.8864            | 41 | -0.5983           | 74 | 0.2819             |
| 9  | -0.8790            | 42 | -0.5868           | 75 | 0.3442             |
| 0  | -0.8725            | 43 | -0.5750           | 76 | 0.4107             |
| 1  | -0.8668            | 44 | -0.5629           | 77 | 0.4818             |
| 2  | -0.8615            | 45 | -0.5505           | 78 | 0.5579             |
| 3  | -0.8564            | 46 | -0.5377           | 79 | 0.6396             |
| 4  | 0.8515             | 47 | -0.5244           | 80 | 0.7276             |
| 5  | -0.8463            | 48 | -0.5107           | 81 | 0.8224             |
| 6  | -0.8399            | 49 | -0.4964           | 82 | 0.9250             |
| 7  | -0.8331            | 50 | -0.4815           | 83 | 1.0363             |
| 8  | -0.8259            | 51 | -0.4659           | 84 | 1.1575             |
| 9  | -0.8138            | 52 | -0.4496           | 85 | 1.2900             |
| 0  | -0.8104            | 53 | -0.4326           | 86 | 1.4352             |
| 1  | -0.8020            | 54 | -0.4146           | 87 | 1.5945             |
| 2  | -0.7932            | 55 | -0.3957           | 88 | 1.7711             |
| 3  | -0.7842            | 56 | -0.3758           | 89 | 1.9661             |
| 4  | -0.7749            | 57 | -0.3547           | 90 | 2.1825             |
| :5 | -0.7655            | 58 | -0.3324           | 91 | 2.4232             |
| 6  | -0.7560            | 59 | -0.3088           | 92 | 2.6914             |
| 17 | -0.7463            | 60 | -0.2838           | 93 | 2.9906             |
| 18 | -0.7366            | 61 | -0.2573           | 94 | 3.3249             |
| 19 | -0.7267            | 62 | -0.2292           | 95 | 3.6986             |
| i0 | -0.7166            | 63 | -0.1994           | 96 | 4.116              |
| H  | -0.7066            | 64 | -0.1677           | 97 | 4.584              |
| 12 | -0.6964            | 65 | -0.1340           | 98 | 5,107.             |
| 13 | -0.6861            | 66 | -0.0983           | 99 | 5.6929             |

| ŗ  | Logis of<br>1-l(x) | 4 <u>r</u> | Logit of<br>1-Hz) | Ť  | Logit of<br>1-Hx) |
|----|--------------------|------------|-------------------|----|-------------------|
| 1  | -1.2093            | 34         | -0.6793           | 67 | -0.0225           |
| 2  | -1.0951            | 35         | -0.6661           | 68 | 0.0154            |
| 3  | -1.0488            | 36         | -0.6527           | 69 | 0.0552            |
| 4  | -1.0198            | 37         | -0.6393           | 70 | 0.0973            |
| 5  | -0.9982            | 38         | -0.6258           | 71 | 0.1416            |
| 6  | -0.9850            | 39         | -0.6122           | 72 | 0.1884            |
| 7  | -0.9733            | 40         | -0.5985           | 73 | 0.2378            |
| 8  | -0.9628            | 41         | -0.5850           | 74 | 0.2901            |
| 9  | -0.9535            | 42         | -0.5712           | 75 | 0.3454            |
| 10 | -0.9449            | 43         | -0.5573           | 76 | 0.4039            |
| 11 | -0.9370            | 44         | -0.5430           | 77 | 0.4660            |
| 12 | -0.9294            | 45         | -0.5285           | 78 | 0.5320            |
| 13 | -0.9220            | 46         | -0.5136           | 79 | 0.6022            |
| 14 | -0.9146            | 47         | -0.4983           | 80 | 0.6770            |
| 15 | -0.9068            | 48         | -0.4825           | 81 | 0.7570            |
| 16 | -0.8975            | 49         | -0.4663           | 82 | 0.8426            |
| 17 | -0.8878            | 50         | -0.4495           | 83 | 0.9344            |
| 18 | -0.8775            | 51         | -0.4321           | 84 | 1.0332            |
| 19 | -0.8669            | 52         | -0.4141           | 85 | 1.1398            |
| 20 | -0.8558            | 53         | -0.3954           | 86 | 1.2551            |
| 21 | -0.8441            | 54         | -0.3760           | 87 | 1.3801            |
| 22 | -0.8321            | 55         | 0.3557            | 88 | 1.5161            |
| 23 | -0.8198            | 56         | -0.3346           | 89 | 1.6644            |
| 24 | -0.8073            | 57         | -0.3125           | 90 | 1.8265            |
| 25 | -0.7947            | 58         | -0.2894           | 91 | 2.0040            |
| 26 | -0.7822            | 59         | -0.2652           | 92 | 2.1989            |
| 27 | -0.7696            | 60         | -0.2398           | 93 | 2.4133            |
| 28 | -0.7596            | 61         | -0.2132           | 94 | 2.6494            |
| 29 | -0.7442            | 62         | -0.1852           | 95 | 2.9097            |
| 30 | -0.7313            | 63         | -0.1559           | 96 | 3.1971            |
| 31 | -0.7184            | 64         | -0.1250           | 97 | 3.5144            |
| 32 | -0.7055            | 65         | -0.0926           | 98 | 3.8651            |
| 33 | -0.6924            | 66         | -0.0584           | 99 | 4.2528            |

#### **References in Arabic:**

دائرة الإحصاءات العامة، وفيات البالغين في الأردن وربطها بوفيات الأطفال وتكوين جداول الحياة 1987، د.عبدالله الزعبي،كمال صالح

جداول الحياة للمملكة الأردنية الهاشمية 2014، المجلس الأعلى للسكان.

دائرة الإحصاءات العامة،2012مسح السكان والصحة الأسرية، عمان.

دائرة الإحصاءات العامة،2009مسح السكان والصحة الأسرية، عمان.

دائرة الإحصاءات العامة،2002مسح السكان والصحة الأسرية، عمان.

دائرة الإحصاءات العامة،1997مسح السكان والصحة الأسرية، عمان.

المجلس الاعلى للسكان، 2009 الدراسة الوطنية لوفيات الامهات 2007-2008، عمان

#### **References in English:**

I. United Nations, 1990 ,Method for estimating adult Mortality, New York.

II. United Nations, MANUAL (X) 1993

III. (Johns Hopkins University London School of Economics-LSE), London School of Hygiene and Tropical Medicine)